An investigation of non-Newtonian fluid flow due to metachronal beating of cilia in a tube

2015 ◽  
Vol 08 (02) ◽  
pp. 1550016 ◽  
Author(s):  
A. M. Siddiqui ◽  
A. A. Farooq ◽  
M. A. Rana

The aim of this study is to explain theoretically the role of ciliary motion on the transport of epididymal fluid through the ductus efferentes of the male reproductive track. For this purpose, a mathematical model has been developed for the flow of a non-Newtonian fluid in an axisymmetric tube due to metachronal wave of cilia motion for the more realistic consequences. Carreau viscous fluid model is considered to see the rheological effects on the pumping characteristics of the flow. Regular perturbation method has been employed to obtain the analytical expressions for the stream function, the velocity field and a relation between the pressure difference and the volume flow rate. It is found that the volume flow rate is influenced significantly by Weissenberg number We and the cilia length parameter ε. The computational results are presented graphically to see the effects of various physical parameters. Finally, the analysis is applied and compared with the observed value of the flow rate of spermatic fluid in the ductus efferentes of the male reproductive track. The volume flow rate is reported closed to the estimated value 6 × 10-3 ml/h in the human ductus efferentes when We = 0.5 and ε is near by 0.25.

2003 ◽  
Vol 125 (4) ◽  
pp. 696-702 ◽  
Author(s):  
Jinhyuk Jung ◽  
Jun Ni

Coolant volume flow rate and pressure critically affect the chip evacuation in the gundrilling process. A predictive fluid model was developed to estimate coolant volume flow rate and pressure, which considered the whole gundrill system of coolant channels as a system of circular and non-circular cross-sections of fluid channels and gundrill geometry. Major contributions to the findings of the following important facts were made through experiments as well as modeling. First, the generation of swarfs in the coolant transport did not create a noticeable hydraulic resistance no matter whether swarfs were carbon steel or aluminum. Second, the size of the coolant holes of the head is not necessarily the most influential factor for determining coolant volume flow rate as believed in general practice. Last, hydraulic resistance by the clearance area of the hole bottom becomes negligible when its size reaches a saturation point.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450064 ◽  
Author(s):  
K. Vajravelu ◽  
S. Sreenadh ◽  
G. Sucharitha ◽  
P. Lakshminarayana

Peristaltic flow of a conducting Jeffrey fluid in an inclined asymmetric channel is investigated. The channel asymmetry is produced by considering a peristaltic wave train on the flexible walls of the channel with different amplitudes and phases. The nonlinear governing equations are solved analytically by a perturbation technique. The expressions for the stream function, axial velocity and the pressure rise per wavelength are determined in terms of the Jeffrey number λ1, the Froude number Fr, the perturbation parameter δ, the angle of inclination θ and the phase difference ϕ. Effects of the physical parameters on the velocity field and the pumping characteristics are discussed. It is observed that the size of the trapping bolus increase with an increase in the magnetic parameter and the volume flow rate. That is, the magnetic parameter and the volume flow rate have strong influence on the trapping bolus phenomenon.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950139 ◽  
Author(s):  
Safia Akram ◽  
Farkhanda Afzal ◽  
Muhammad Imran

The purpose of this paper is to discuss the theoretical study of a nonlinear problem of cilia induced flow by considering the fluid as anincompressible non-Newtonian fluid (hyperbolic tangent fluid) model by means of ciliated walls. The leading equations of present flow problem are simplified under the consideration of long-wavelength approximation. We have utilized regular perturbation technique to solve the simplified leading equations of hyperbolic tangent fluid model. The analytical solution is computed for stream function and numerical solution is computed for the rise in pressure. The characteristics of the ciliary system on tangent hyperbolic fluid are analyzed graphically and discussed in detail. It has been found that when [Formula: see text], the results of pressure rise coincide with the results of Newtonian fluid. It has also been observed that the size of the trapping bolus decreases with an increase in Hartmann number and Weissenberg number.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 559-567 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present analysis, we have modeled the governing equations of a two dimensional hyperbolic tangent fluid model. Using the assumption of long wavelength and low Reynolds number, the governing equations of hyperbolic tangent fluid for an asymmetric channel have been solved using the regular perturbation method. The expression for pressure rise has been calculated using numerical integrations. At the end, various physical parameters have been shown pictorially. It is found that the narrow part of the channel requires a large pressure gradient, also in the narrow part the pressure gradient decreases with the increase in Weissenberg number We and channel width d.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550026 ◽  
Author(s):  
Noreen Sher Akbar ◽  
Z. H. Khan

The impulsion system of cilia motion is deliberated by biviscosity fluid model. The problem of two-dimensional motion of biviscosity fluid privileged in a symmetric channel with ciliated walls is considered. The features of ciliary structures are resolute by the supremacy of viscous effects above inertial possessions by the long-wavelength and low Reynolds approximation. Closed-form solutions for the longitudinal pressure gradient, temperature and velocities are obtained. The pressure gradient and volume flow rate for different values of the biviscosity are also premeditated. The flow possessions for the biviscosity fluid resolute as a function of the cilia and metachronal wave velocity.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1475
Author(s):  
Humaira Yasmin ◽  
Naveed Iqbal ◽  
Aiesha Hussain

The peristaltic flow of Johnson–Segalman fluid in a symmetric curved channel with convective conditions and flexible walls is addressed in this article. The channel walls are considered to be compliant. The main objective of this article is to discuss the effects of curvilinear of the channel and heat/mass convection through boundary conditions. The constitutive equations for Johnson–Segalman fluid are modeled and analyzed under lubrication approach. The stream function, temperature, and concentration profiles are derived. The analytical solutions are obtained by using regular perturbation method for significant number, named as Weissenberg number. The influence of the parameter values on the physical level of interest is outlined and discussed. Comparison is made between Jhonson-Segalman and Newtonian fluid. It is concluded that the axial velocity of Jhonson-Segalman fluid is substantially higher than that of Newtonian fluid.


Sign in / Sign up

Export Citation Format

Share Document