VENTILATION SYSTEM MODELING AND TURBULENCE MINIMIZATION

Author(s):  
R. WHALLEY ◽  
A. ABDUL-AMEER

In this feasibility study, a large scale ventilation system comprising spatially dispersed enclosed volumes, fans, ducting and airways is considered. Analytical procedures enabling the construction of simple, compact models including the relatively pointwise and significantly distributed system elements are proposed. Modeling accuracy, with the incorporation of the entrance and exit impedances and the airway, continuous energy storage and dissipation effects are emphasized. Output flow maximization, under quiescent operating conditions is investigated and the optimum relationships between the airway characteristic impedance, entrance and exit resistances are established. The minimization of the vibration and turbulence arising from the continuous compression/expansion effects arising from the input–output volume airflow difference is achieved, whilst simultaneously maximizing the output volume airflow. Variations in the parameter values are employed to confirm the effectiveness of operating under optimum conditions, for ventilation system airways with various dimensions and characteristics.

Author(s):  
Franklin F. K. Chen ◽  
B. Ronald Moncrief

Abstract A canyon building houses special nuclear material processing facilities in two canyon like structures, each with approximately a million cubic feet of air space and a hundred thousand hydraulic equivalent feet of ductwork of various cross sections. The canyon ventilation system is a “once through” design with separate supply and exhaust fans, utilizes two large sand filters to remove radionuclide particulate matter, and exhausts through a tall stack. The ventilation equipment is similar to most industrial ventilation systems. However, in a canyon building, nuclear contamination prohibits access to a large portion of the system and therefore limits the kind of plant data possible. The facility investigated is 40 years old and is operating with original or replacement equipment of comparable antiquity. These factors, access and aged equipment, present a challenge in gauging the performance of canyon ventilation, particularly under uncommon operating conditions. The ability to assess canyon ventilation system performance became critical with time, as the system took on additional exhaust loads and aging equipment approached design maximum. Many “What if?” questions, needed to address modernization/safety issues, are difficult to answer without a dynamic model. This paper describes the development, the validation and the utilization of a dynamic model to analyze the capacity of this ventilation system, under many unusual but likely conditions. The development of a ventilation model with volume and hydraulics of this scale is unique. The resultant model resolutions of better than 0.05″wg under normal plant conditions and approximately 0.2″wg under all plant conditions achievable with a desktop computer is a benchmark of the power of micro-computers. The detail planning and the persistent execution of large scale plant experiments under very restrictive conditions not only produced data to validate the model but lent credence to subsequent applications of the model to mission oriented analysis. Modelling methodology adopted a two parameter space approach, rational parameters and irrational parameters. Rational parameters, such as fan age-factors, idle parameters, infiltration areas and tunnel hydraulic parameters are deduced from plant data based on certain hydraulic models. Due to limited accessibility and therefore partial data availability, the identification of irrational model parameters, such as register positions and unidentifiable infiltrations, required unique treatment of the parameter space. These unique parameters were identified by a numerical search strategy to minimize a set of performance indices. With the large number of parameters, this further attests to our strategy in utilizing the computing power of modern micros. Nine irrational parameters at five levels and 12 sets of plant data, counting up to 540 runs, were completely searched over the time span of a long weekend. Some key results, in assessing emergency operation, in evaluating modernization options, are presented to illustrate the functions of the dynamic model.


Author(s):  
Gabriele Lucherini ◽  
Vittorio Michelassi ◽  
Stefano Minotti

Abstract A gas turbine is usually installed inside a package to reduce the acoustics emissions and protect against adverse environmental conditions. An enclosure ventilation system is keeps temperatures under acceptable limits and dilutes any potentially explosive accumulation of gas due to unexpected leakages. The functional and structural integrity as well as certification needs of the instrumentation and auxiliary systems in the package require that temperatures do not exceed a given threshold. Moreover, accidental fuel gas leakages inside the package must be studied in detail for safety purposes as required by ISO21789. CFD is routinely used in BHGE (Baker Hughes, a GE Company) to assist in the design and verification of the complete enclosure and ventilation system. This may require multiple CFD runs of very complex domains and flow fields in several operating conditions, with a large computational effort. Modeling assumptions and simulation set-up in terms of turbulence and thermal models, and the steady or unsteady nature of the simulations must be carefully assessed. In order to find a good compromise between accuracy and computational effort the present work focuses on the analysis of three different approaches, RANS, URANS and Hybrid-LES. The different computational approaches are first applied to an isothermal scaled-down model for validation purposes where it was possible to determine the impact of the large-scale flow unsteadiness and compare with measurements. Then, the analysis proceeds to a full-scale real aero-derivative gas turbine package. in which the aero and thermal field were investigated by a set of URANS and Hybrid-LES that includes the heat released by the engine. The different approaches are compared by analyzing flow and temperature fields. Finally, an accidental gas leak and the subsequent gas diffusion and/or accumulation inside the package are studied and compared. The outcome of this work highlights how the most suitable approach to be followed for industrial purposes depends on the goal of the CFD study and on the specific scenario, such as NPI Program or RQS Project.


2019 ◽  
Author(s):  
Ryther Anderson ◽  
Achay Biong ◽  
Diego Gómez-Gualdrón

<div>Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of thousands already synthesized), molecular simulation, such as grand canonical Monte Carlo (GCMC), has frequently been used to rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained a neural network as the first example of a machine learning model capable of predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our neural network only on alchemical species, represented only by their geometry and force field parameters, and used this neural network to predict the loadings of real adsorbates. We focused on predicting room temperature adsorption of small (one- and two-atom) molecules relevant to chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also observed surprisingly promising predictions for more complex molecules, whose properties are outside the range spanned by the alchemical adsorbates. Prediction accuracies suitable for large-scale screening were achieved using simple MOF (e.g. geometric properties and chemical moieties), and adsorbate (e.g. forcefield parameters and geometry) descriptors. Our results illustrate a new philosophy of training that opens the path towards development of machine learning models that can predict the adsorption loading of any new adsorbate at any new operating conditions in any new MOF.</div>


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


2021 ◽  
Vol 69 (4) ◽  
pp. 345-350
Author(s):  
Divas Karimanzira ◽  
Thomas Rauschenbach

Abstract Population rise, climate change, soil degradation, water scarcity, and food security require efficient and sustainable food production. Aquaponics is a highly efficient way of farming and is becoming increasingly popular. However, large scale aquaponics still lack stability, standardization and proof of economical profitability. The EU-INAPRO project helps to overcome these limitations by introducing digitization, enhanced technology, and developing standardized modular scalable solutions and demonstrating the viability of large aquaponics. INAPRO is based on an innovation a double water recirculation system (DRAPS), one for fish, and the other one for crops. In DRAPS, optimum conditions can be set up individually for fish and crops to increase productivity of both. Moreover, the integration of digital technologies and data management in the aquaculture production and processing systems will enable full traceability and transparency in the processes, increasing consumers’ trust in aquaculture products. In this paper, the innovations and the digitization approach will be introduced and explained and the key benefits of the system will be emphasized.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3008
Author(s):  
Agnieszka W. Lach ◽  
André V. Gaathaug

This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces, such as underground garages. The purpose was to find the mass flow rate limit, hence the TPRD diameter limit, that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway, and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard 315 mm diameter outlet. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzles from different hydrogen reservoir pressures. Both types of mass flow, constant and blowdown, were included in the experimental matrix. The analysis of the hydrogen concentration of the created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases, together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 317-324 ◽  
Author(s):  
J.A. Libra ◽  
A. Schuchardt ◽  
C. Sahlmann ◽  
J. Handschag ◽  
U. Wiesmann ◽  
...  

The aeration systems of two full-scale activated sludge basins were compared over 2.5 years under the same operating conditions using dynamic off-gas testing. Only the material of the diffuser was different, membrane vs. ceramic tube diffusers. The experimental design took the complexity and dynamics of the system into consideration. The investigation has shown that, although the membrane diffusers have higher initial standard oxygen transfer efficiency (SOTE) and standard aeration efficiency (SAE), these decreased over time, while the SAE of the ceramic diffusers started lower, but increased slightly over the whole period. Measurement of air distribution in the basins along with dissolved oxygen concentration profiles have provided important information on improving process control and reducing energy costs. The results show that dynamic off-gas testing can effectively be used for monitoring the aeration system and to check design assumptions under operating conditions. The information can be used to improve the design of new aeration systems or in retro-fitting existing basins.


Meccanica ◽  
2021 ◽  
Vol 56 (5) ◽  
pp. 1223-1237
Author(s):  
Giacomo Moretti ◽  
Andrea Scialò ◽  
Giovanni Malara ◽  
Giovanni Gerardo Muscolo ◽  
Felice Arena ◽  
...  

AbstractDielectric elastomer generators (DEGs) are soft electrostatic generators based on low-cost electroactive polymer materials. These devices have attracted the attention of the marine energy community as a promising solution to implement economically viable wave energy converters (WECs). This paper introduces a hardware-in-the-loop (HIL) simulation framework for a class of WECs that combines the concept of the oscillating water columns (OWCs) with the DEGs. The proposed HIL system replicates in a laboratory environment the realistic operating conditions of an OWC/DEG plant, while drastically reducing the experimental burden compared to wave tank or sea tests. The HIL simulator is driven by a closed-loop real-time hydrodynamic model that is based on a novel coupling criterion which allows rendering a realistic dynamic response for a diversity of scenarios, including large scale DEG plants, whose dimensions and topologies are largely different from those available in the HIL setup. A case study is also introduced, which simulates the application of DEGs on an OWC plant installed in a mild real sea laboratory test-site. Comparisons with available real sea-test data demonstrated the ability of the HIL setup to effectively replicate a realistic operating scenario. The insights gathered on the promising performance of the analysed OWC/DEG systems pave the way to pursue further sea trials in the future.


Sign in / Sign up

Export Citation Format

Share Document