Carbon Nanomaterial-Based Composites in Wastewater Purification

Nano LIFE ◽  
2014 ◽  
Vol 04 (03) ◽  
pp. 1441006 ◽  
Author(s):  
Yongshun Huang ◽  
Xiaoping Chen

New techniques and materials are called for wastewater treatment due to the shortage of worldwide fresh water and the increasing water demand. As a simple and efficient method, adsorption technique has been extensively applied to remove organic and inorganic pollutants from contaminated water. The application of carbon nanomaterials, such as activated carbon, carbon nanotubes (CNTs), graphenes and their derivatives/analogues, in wastewater treatment has also been investigated due to their unique properties, such as wide availability, porous structure, large surface area, tunable morphology and nontoxicity. This review highlights the recent advances of wastewater treatment utilizing carbon nanomaterial modified composites as adsorbents. The adsorption phenomenon and its mechanism are briefly discussed. Detailed discussions are focused on the selective adsorption of carbon nanomaterial composites to unique pollutants. The remaining challenges are also mentioned.

2021 ◽  
Author(s):  
Xia Cui ◽  
Hua Shu ◽  
Lu Wang ◽  
Guoning Chen ◽  
Jili Han ◽  
...  

Abstract Progesterone, an endocrine-disrupting chemical, has been frequently detected in wastewater for decades, posing a serious threat to ecological and human health. However, it is still a challenge to achieve the effective detection of progesterone in complex matrices water samples. In this study, a novel adsorbent CNT@CS/P(MAA) was prepared by grafting methacrylic polymers on the surface of modified carbon nanomaterials. Compared with other reported materials, the hybrid carbon nanomaterial could selectively identify the progesterone in the complex industrial pharmaceutical wastewater, and its adsorption performance is almost independent of pH and environmental temperature. In addition, this nanomaterial could be reused with a good recovery rate. The prepared nanomaterials were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, nitrogen adsorption and desorption experiments and thermo gravimetric analysis. The results confirmed that the methacrylic polymers and chitosan layer were successfully grafted on the surface of carbon nanotubes. Adsorption isotherms, adsorption kinetics, and selectivity tests showed that CNT@CS/P(MAA) had a high adsorption capacity (44.45 mg·g-1), a fast adsorption rate and a satisfied selectivity for progesterone. Then, CNT@CS/P(MAA) was used as solid phase extraction sorbent and combined with HPLC to enrich progesterone from the wastewater samples. Under the optimum conditions, a good linearity was obtained with the correlation coefficient was 0.9998, and the limit of detection was 0.003 ng·mL-1. Therefore, this method could be used for the selective and effective detection of progesterone in the industrial wastewater with complex substrates, and provided a new method for the detection of progesterone in other environmental waters.


Vestnik MGSU ◽  
2019 ◽  
pp. 589-602 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena S. Gogina

Introduction. Vietnamese urban municipal wastewater treatment plants are mainly of aeration-type facilities. Nowadays, an aeration-type plant, the Sequencing Batch Reactor (SBR), is widely applied and possesses a number of advantages over traditional systems with suspended activated sludge. Advantages of the SBR are mainly concluded in simplicity of operation, occupied area and cost. There is a number of problems at the wastewater treatment plants; they are connected with supplying only a half of wastewater design amount for the treatment as well as with quality of the purified water that must satisfy requirements of the Vietnamese discharge standard, the Standard A. Therefore, reconstruction and modification of the SBR is the major challenger to ensure the sustained development of large Vietnamese cities and maintenance of ecological balance. Materials and methods. To enhance the efficiency of wastewater purification in the SBR, the experiments were set on reactor reconstruction and modification by two directions: (1) Technological method, i.e. applying the Biochip 25 biocarrier, and (2) Operation method, i.e. adding the anoxic phase in reactor operation cycle. Laboratory tests were conducted for each of the directions, including comparison of a typical reactor with the modified one. Results. The study resulted in obtaining an optimal amount of the BioChip biocarrier material (10 to 20 %) that increased efficiency of wastewater purification by 10 to 20 %. In addition to this, when creating an anoxic phase of the operation cycle, efficiency of nitrogen removal increased by 20 %. When the denitrification occurs under the anoxic conditions, it contributes to stabilization of ammonium nitrogen removal for daily nitrogen loading in reactor of 0.3 to 0.8 TKN kg/sludge kg. Conclusions. The suggested technology provides the quality of treated water corresponding with the Vietnamese Standard A requirements. At the present, it is planned to proceed with the experiment on the base of Vietnamese semi-industrial plant for research and appraisal of the SBR reconstruction and modification method. Acknowledgements. The authors are grateful to AKVA Control company in Samara for granted biocarrier Mutag BioChip 25 and to Associate Professor Tran Van Quang and his students, Nguyen Ngoc Phuong and Truong Quoc Dai, of Environment Protect Research Center, Danang University for support of the experiment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1617
Author(s):  
Rosa Garriga ◽  
Tania Herrero-Continente ◽  
Miguel Palos ◽  
Vicente L. Cebolla ◽  
Jesús Osada ◽  
...  

Carbon nanomaterials have attracted increasing attention in biomedicine recently to be used as drug nanocarriers suitable for medical treatments, due to their large surface area, high cellular internalization and preferential tumor accumulation, that enable these nanomaterials to transport chemotherapeutic agents preferentially to tumor sites, thereby reducing drug toxic side effects. However, there are widespread concerns on the inherent cytotoxicity of carbon nanomaterials, which remains controversial to this day, with studies demonstrating conflicting results. We investigated here in vitro toxicity of various carbon nanomaterials in human epithelial colorectal adenocarcinoma (Caco-2) cells and human breast adenocarcinoma (MCF-7) cells. Carbon nanohorns (CNH), carbon nanotubes (CNT), carbon nanoplatelets (CNP), graphene oxide (GO), reduced graphene oxide (GO) and nanodiamonds (ND) were systematically compared, using Pluronic F-127 dispersant. Cell viability after carbon nanomaterial treatment followed the order CNP < CNH < RGO < CNT < GO < ND, being the effect more pronounced on the more rapidly dividing Caco-2 cells. CNP produced remarkably high reactive oxygen species (ROS) levels. Furthermore, the potential of these materials as nanocarriers in the field of drug delivery of doxorubicin and camptothecin anticancer drugs was also compared. In all cases the carbon nanomaterial/drug complexes resulted in improved anticancer activity compared to that of the free drug, being the efficiency largely dependent of the carbon nanomaterial hydrophobicity and surface chemistry. These fundamental studies are of paramount importance as screening and risk-to-benefit assessment towards the development of smart carbon nanomaterial-based nanocarriers.


2018 ◽  
Vol 251 ◽  
pp. 06005 ◽  
Author(s):  
Nazira Dzhumagulova ◽  
Ilya Svetkov ◽  
Vladimir Smetanin ◽  
Nguyen Dinh Dap

The purpose of the present research was to enhance the efficiency of biological wastewater treatment through the direct impact on the metabolism of activated sludge. In the course of research, species and quantitative composition of biological community of activated sludge in aeration tanks during wastewater purification process was studied. Comparative analysis was carried out for linen production wastewater and household sewage. Possible application of biological treatment in linen production was evaluated. Proposals were developed on creation of controllable biological treatment facility. In this paper, biological methods are shown to be efficient for household sewage treatment. Comparative analysis was carried out for linen production wastewater and household sewage. Possible application of biological treatment in linen production was evaluated. Proposals were developed on creation of controllable biological treatment facility.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 415
Author(s):  
Marika Tonellato ◽  
Monica Piccione ◽  
Matteo Gasparotto ◽  
Pietro Bellet ◽  
Lucia Tibaudo ◽  
...  

Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds’ inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.


2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Martyna Sasiada ◽  
Aneta Fraczek-Szczypta ◽  
Ryszard Tadeusiewicz

AbstractA new method of predicting the properties of carbon nanomaterials from carbon nanotubes and graphene oxide, using electrophoretic deposition (EPD) on a metal surface, was investigated. The main goal is to obtain the basis for nervous tissue stimulation and regeneration. Because of the many variations of the EPD method, costly and time-consuming experiments are necessary for optimization of the produced systems. To limit such costs and workload, we propose a neural network-based model that can predict the properties of selected carbon nanomaterial systems before they are produced. The choice of neural networks as predictive learning models is based on many studies in the literature that report neural models as good interpretations of real-life processes. The use of a neural network model can reduce experimentation with unpromising methods of systems processing and preparation. Instead, it allows a focus on experiments with these systems, which are promising according to the prediction given by the neural model. The performed tests showed that the proposed method of predictive learning of carbon nanomaterial properties is easy and effective. The experiments showed that the prediction results were consistent with those obtained in the real system.


2015 ◽  
Vol 3 (25) ◽  
pp. 6532-6538 ◽  
Author(s):  
Chun Hin Mak ◽  
Caizhi Liao ◽  
Ying Fu ◽  
Meng Zhang ◽  
Chun Yin Tang ◽  
...  

The sensitivity of OECT-based epinephrine sensors has been dramatically improved by modifying carbon nanomaterials on the Pt gate electrodes.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43036-43057 ◽  
Author(s):  
Sanjay R. Dhakate ◽  
Kiran M. Subhedar ◽  
Bhanu Pratap Singh

Among different carbon nanomaterial foam-filled polymer composites, graphene-based foam gives superior specific shielding effectiveness when compared to typical metals.


Sign in / Sign up

Export Citation Format

Share Document