scholarly journals STUDIES ON VARIOUS FUNCTIONAL PROPERTIES OF TITANIA THIN FILM DEVELOPED ON GLAZED CERAMIC WALL TILES

Author(s):  
ASHA ANIL ◽  
BANGORIA DARSHANA R ◽  
S. N. MISRA

A sol-gel based TiO 2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

2006 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Si Sun ◽  
Jo Han Gan ◽  
Jennifer J. Paynter ◽  
Stephen J. Tucker

Our understanding of the mammalian inwardly rectifying family of K+ channels (Kir family) has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem, we cloned and characterized genes encoding KirBac orthologs from a wide variety of different prokaryotes and a simple unicellular eukaryote. The functional properties of these KirBacs were then examined by growth complementation in a K+ uptake-deficient strain of Escherichia coli (TK2420). Whereas some KirBac genes exhibited robust growth complementation, others either did not complement or showed temperature-dependent complementation including KirBac1.1 and KirBac3.1. In some cases, KirBac expression was also toxic to the growth of E. coli. The KirBac family exhibited a range of sensitivity to the K+ channel blockers Ba2+ and Cs+ as well as differences in their ability to grow on very low-K+ media, thus demonstrating major differences in their permeation properties. These results reveal the existence of a functionally diverse superfamily of microbial KirBac genes and present an excellent resource for the structural and functional analysis of this class of K+ channels. Furthermore, the complementation assay used in this study provides a simple and robust method for the functional characterization of a range of prokaryotic K+ channels that are difficult to study by traditional methods.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1237
Author(s):  
Byung-Geon Park ◽  
Chang-Ho Lee ◽  
Kyong-Hwan Chung

N- and Ni-coated TiO2 (NNT) were prepared by a facile sol-gel method as a photosensitive photocatalyst to visible light. NNT sol was used to coat the surface of an LED lamp cap and body made of polycarbonate with a thin NNT film. The coated thin film was dried in an oven at 130 °C. This NNT thin film had an amorphous TiO2 structure and absorbed 600 nm of visible light. The decomposition properties of formaldehyde on the NNT photocatalyst after irradiation with visible light were investigated. The LED lamp was irradiated with visible light at 500–620 nm and 6 W. Formaldehyde was decomposed by a photocatalytic reaction by visible light irradiation on the NNT-coated polycarbonate surface. Escherichia coli (E. coli), Staphylococcus aureus, and Pseudomonas aeruginosa were also used to examine the sterilizing properties of pathogenic bacteria using an LED lamp kit. The pathogenic bacteria on the NNT-coated polycarbonate surface were sterilized by irradiation with visible light.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 38347-38354 ◽  
Author(s):  
Yana Jia ◽  
Wen Wang ◽  
Yuan Sun ◽  
Mengwei Liu ◽  
Xufeng Xue ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3560 ◽  
Author(s):  
Wen Wang ◽  
Xueli Liu ◽  
Shengchao Mei ◽  
Mengwei Liu ◽  
Chao Lu ◽  
...  

A Pd-Ni alloy thin-film coated surface acoustic wave (SAW) device is proposed for sensing hydrogen. The Pd-Ni thin-film was sputtered onto the SAW propagation path of a SAW device with a delay line pattern to build the chip-sized hydrogen sensor. The prepared sensor chip was characterized by employing a differential oscillation loop. The effect of the Pd-Ni film thickness on sensing performance was also evaluated, and optimal parameters were determined, allowing for fast response and high sensitivity. Excellent working stability (detection error of 3.7% in half a year), high sensitivity (21.3 kHz/%), and fast response (less than 10 s) were achieved from the 40 nm Pd-Ni alloy thin-film coated sensing device.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3044-3044
Author(s):  
Ketha V. K. Mohan ◽  
Shilpakala Sainath Rao ◽  
Chintamani D Atreya

Abstract Bacterial contamination of blood and blood components is a major safety concern in transfusion medicine. In order to facilitate safer transfusion products to the end users, there is a critical need for novel proof-of-concept ideas for pathogen reduction, which are different from the current ones that outweigh the associated toxicity and/or contamination risk. Present study involves use of nine novel synthetic antimicrobial peptides (four originated from thrombin-induced human platelet derived antimicrobial proteins named PP1-PP4 and five having 1–5 repeats of arginine and tryptophan residues, named DP1-DP5. These peptides were tested on plasma samples spiked with 10-fold dilutions of 5 different bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacillus cereus) that are important to the field of transfusion medicine and analyzed whether these spiked plasma samples could be cured of the pathogens. Each spiked sample was incubated with a peptide (PP1-PP4 and DP1-DP5) for 2 hours at 37°C. Following incubation, a fixed volume of the inoculum was plated on nutrient agar plates and incubated overnight at 37°C for colony count. Spiked sample without any peptide was included as control. Results revealed that out of nine peptides tested, while DP3 and DP4 were active against all 5 organisms tested resulting in 50–100 % of inhibition of specific organisms, peptide PP4 was only active against E. coli, P. aeruginosa and Bacillus cereus resulting in a 30–100% reduction in the CFU/ml compared to the controls. Table 1 Organism Colony count expressed in % Control PP1 PP2 PP3 PP4 DP1 DP2 DP3 DP4 DP5 S. aureus 100 90 100 26 100 100 20 10 56 100 E. coli 100 95 100 100 71 100 93 4 18 85 P. aeruginosa 100 100 100 100 0 100 0 0 13 100 K. pneumoniae 100 100 100 100 100 74 3 0 0 25 B. cereus 100 100 100 100 50 100 100 25 77 100 Based on these results, it appears that peptides used in this study provide a new antibacterial strategy against a range of bacteria and with further studies and refinement, these peptides could prove useful towards bacterial reduction in blood and blood products. The findings and conclusions in this abstract have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li-Rong Yao ◽  
Xiao-Mo Song ◽  
Guang-Yu Zhang ◽  
Shan-Qing Xu ◽  
Ye-Qun Jiang ◽  
...  

To widen the application of nanofibers web in the field of medical health materials, a new Ag/amino-terminated hyperbranched polymer (HBP)/polyacrylonitrile (PAN) nanofiber web with excellent antimicrobial activity and filtration property was produced with Ag/HBP dispersion solution and PAN nanofiber. Ag/HBP dispersion solution was prepared with HBP as reducer and stabilizer, and Ag/HBP/PAN nanofiber was prepared by modifying electrospun PAN nanofiber with Ag/HBP aqueous solution. The characterization results showed that spherical Ag nanoparticles were prepared and they had a narrow distribution in HBP aqueous solution. The results of Ag/HBP/PAN nanofiber characterized with SEM and EDS showed that the content of silver nanoparticles on the surface of PAN nanofiber was on the increase when the treating temperature rose. The bacterial reduction rates of HBP-treated PAN nanofiber againstS. aureusandE. coliwere about 89%, while those of the Ag/HBP/PAN nanofiber againstS. aureusandE. coliwere 99.9% and 99.96%, respectively, due to the cooperative effects from the amino groups in HBP and Ag nanoparticles. Moreover, the small pores and high porosity in Ag/HBP/PAN nanofiber web resulted in high filtration efficiency (99.9%) for removing smaller particles (0.1 μm~0.7 μm), which was much higher than that of the gauze mask.


Sign in / Sign up

Export Citation Format

Share Document