Evaluating a Water Conservation Response to Climate Change in the Lower Boise River Basin

2016 ◽  
Vol 02 (03) ◽  
pp. 1650012
Author(s):  
Robert D. Schmidt ◽  
R. Garth Taylor

Aquifers created or sustained by seepage losses from Bureau of Reclamation (Reclamation) Projects extend over vast areas of western states. Yet agricultural water conservation measures such as canal lining top the list of State and Federal policies for mitigating the effect of water shortages brought about by climate change. Cost benefit analysis (CBA) of new Reclamation water conservation infrastructure such as canal lining or piping is too often Project-specific, and detached from basin hydrology. The value of canal seepage as a positive externality is thus ignored in CBA. A basin-wide approach to hydro-economic modeling that accounts for the externalized costs and benefits of both canal seepage and new canal lining conservation insures that incidental aquifer recharge is recognized in CBA of Federally financed irrigation water conservation measures. Integrated hydrologic and partial equilibrium models are employed in the Lower Boise River basin to calculate the foregone benefit to non-project groundwater and drain water irrigation of a hypothetical Boise Project canal lining response to projected climate change water shortages. Basin-wide hydrologic response data is used to compute shifts in non-project groundwater supply functions and drain water supply constraints, and a base-case water supply scenario is compared to six climate change scenarios in which projected water shortages are offset by lining of project canals. The foregone net benefit to non-project groundwater and drain water irrigation resulting from elimination of the canal seepage externality (US$[Formula: see text]4.4–22.6[Formula: see text]million depending on the scenario) outweighs the increase in net benefit to Boise Project irrigation by canal lining (US$[Formula: see text]1.4–19.3[Formula: see text]million). On average, foregone groundwater and drain water irrigation benefit exceeds restored canal irrigation benefit by about 38%. Canal lining conservation is unable to restore total basin-wide irrigation net benefit to the base-case level in any of the climate change scenarios; rather it shifts the foregone benefit of climate change shortages from project canal irrigation to non-project groundwater and drain water irrigation. The canal lining CPA is not a complete accounting of either costs or benefits of canal lining conservation. On the cost side, only the foregone benefits of eliminating the positive canal seepage externality are calculated; construction and maintenance costs of canal lining are omitted. On the benefit side, Arrowrock canal irrigators are assumed to be the sole beneficiary of reduced seepage losses.

Author(s):  
Olga María Bermúdez ◽  
Marcela Lombana

Water is indispensable to life because all the functions of living beings rely on its presence: breathing, nutrition, circulation, and reproduction. Water forms part of all living bodies, both animal and vegetable. It is a natural resource necessary for human life. This natural resource has been threatened by climate change and its scarcity has been reported in many locations worldwide. According to the FAO, in 2014 almost 50 countries were faced with water shortages: Africa is the continent with the highest percentage of water stress (41%), while Asia has the highest percentage of countries with total water shortage (25%). Confronted with this critical problem, it is necessary that people of all ages, races, and cultures become aware of the value that water represents and take action in both the individual and collective spheres. To ensure that the next generation understands water’s properties and functions, and learns to value and take care of it, this action should start in schools, which play a fundamental role in the education of children and young people.


2021 ◽  
Vol 13 (3) ◽  
pp. 1493
Author(s):  
Chunyan Cao ◽  
Jun Tao

Predicting the geographic distribution of a species together with its response to climate change is of great significance for biodiversity conservation and ecosystem sustainable development. Zelkova serrata is an excellent shelterbelt tree species that is used for soil and water conservation due to the fact of its well-developed root system, strong soil fixation, and wind resistance. However, the wild germplasm resources of Z. serrata have been increasingly depleted due to the fact of its weak ability to regenerate naturally and the unprecedented damage humans have caused to the natural habitats. The present work using Maxent aimed to model the current potential distribution of this species as well as in the future, assess how various environmental factors affect species distribution, and identify the shifts in the distribution of this species in various climate change scenarios. Our findings show habitat in provinces in the southern Qinling and Huai river basins have high environmental suitability. Temperature seasonality, annual precipitation, annual mean temperature, and warmest quarter precipitation were the most important factors affecting its distribution. Under a climate change scenario, the appropriate habitat range showed northeastward expansion geographically. The results in the present work can lay the foundation for the cultivation and conservation of Z. serrata.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Pilar Barría ◽  
Ignacio Barría Sandoval ◽  
Carlos Guzman ◽  
Cristián Chadwick ◽  
Camila Alvarez-Garreton ◽  
...  

Chile is positioned in the 20th rank of water availability per capita. Nonetheless, water security levels vary across the territory. Around 70% of the national population lives in arid and semiarid regions, where a persistent drought has been experienced over the last decade. This has led to water security problems including water shortages. The water allocation and trading system in Chile is based on a water use rights (WURs) market, with limited regulatory and supervisory mechanisms, where the volume to be granted as permanent and eventual WURs is calculated from statistical analyses of historical streamflow records if available, or from empirical estimations if they are not. This computation of WURs does not consider the nonstationarity of hydrological processes nor climatic projections. This study presents the first large sample diagnosis of water allocation system in Chile under climate change scenarios. This is based on novel anthropic intervention indices (IAI), which were computed as the ratio between the total granted water volume to the water availability within 87 basins in north-central and southern Chile (30°S–42°S). The IAI were evaluated for the historical period (1979–2019) and under modeled-based climatic projections (2055–2080). According to these IAI levels, to date, there are 20 out of 87 overallocated basins, which under the assumption that no further WURs will be granted in the future, increases up to 25 basins for the 2055–2080 period. The results show that, to date most of north-central Chilean catchments already have a large anthropic intervention degree, and the increases for the future period occurs mostly in the southern region of the country (approximately 38°S), which has been considered as possible source of water for large water transfer projects (i.e., water roads). These indices and diagnosis are proposed as a tool to help policy makers to address water scarcity under climate change.


2020 ◽  
Vol 39 (4) ◽  
pp. 758-768
Author(s):  
Antti Arpalahti ◽  
Mari Lundström

Abstract The current study presents the effect of process chemistry as well as climate conditions on the water balance of a heap leach operation for black-schist ore. The research is based on the actual water balance at the Terrafame (former Talvivaara) mine site in Finland during the years 2017 and 2018 (base case). In addition, scenarios with a deviation in climatic conditions (Antofagasta case), chemistry (non-heat generation case) and effects of climate change (RCP4.5 (representative concentration pathway) case and RCP8.5 case) were investigated. In the first case, the annual precipitation and evaporation were simulated for a highly arid climate such as in the Antofagasta Mountains, whereas in the second case, an assumption was made of no excess heat generation (exothermic reactions) in the heap reactions. The base case predicted a requirement of 9,000,000 m3 annual discharge of water from the site with the heaviest annual rainfall. The discharge requirement and therefore the water footprint of the plant was shown to be highly dependent on the climatic conditions, as the Antofagasta case predicted a discharge of water from the site as low as zero. Heat generation, typical of the reactions dominating in a boreal black-schist heap leach operation, was shown to be vital for water management operations and therefore discharge management in Nordic climatic conditions (the non-heat generation case), where the discharge requirement was shown to be nearly threefold compared to the base case (2018). If the black-schist ore body resided in Antofagasta, the freshwater consumption would be over eight times the current consumption in the base case in Finland. Climate change scenarios show that the changing climate would increase the range of variation but only increase the need for water discharge from the site by 5% in the wettest years, while raw water utilization would increase by 46 to 83% during the driest years. In general, the results highlight the issues related to the mass and energy balance of a heap leach nickel process, and therefore feasibility—showing that although the heat generation is ore- and process-specific, the water consumption as well as discharge to the surrounding environment is highly dependent on the climatic conditions (precipitation, temperature) in the geographical location.


Author(s):  
Siddharam . ◽  
J.B. Kambale ◽  
M. Nemichandrappa ◽  
A.T. Dandekar ◽  
D. Basavaraja

Background: Global climate change and its impact on crop water requirement have widely discussed in recent years. In the present century, climate change had become a significant concern and atmospheric temperature is the dominant climatic factor that indicates the changes in both regional and global scales. This study was undertaken to evaluate the trend and predict the changes in crop water requirement under various climate change scenarios. Methods: The statistical nonparametric Mann-Kendall test and Sen’s slope used to identify trend in the data series. In this study ArcGIS V. xx software used for investigating spatial patterns in data. CROPWAT-8.0 model used for calculation of crop water requirement under various climate change scenarios. Total six climate change scenarios were considered for assessment.Result: The crop water requirement (ETc) of pigeonpea estimated and exhibited an increasing trend and a decreasing trend in study area in the past 35 years. The spatial distribution maps reveal that the distribution of ETc is found an increasing trend in all the scenarios to reference ETc. An increasing trend of ETc of pigeon pea was observed in all the places under various climate change scenarios. It was suggested to promote rainwater harvesting, soil and water conservation and increase ground water recharge in the study area to minimize the risk of yield reduction due to the availability of minimum water under changing climatic condition.


2021 ◽  
pp. 1420326X2199391
Author(s):  
Naveen Kishore

This paper aims to investigate the implication of present and future bioclimatic potential of passive heating and cooling design strategies for climate change scenarios of five locations covering all climate zones of India. Weather data for future climate change were developed for A2 (medium-high) scenario of the Intergovernmental Panel on Climate Change (IPCC) for four time slices, namely TMY (Typical Meteorological Year), 2020, 2050 and 2080. A case study residential building was used for calibration and validation of the bioclimatic potential using EnergyPlus simulation. Results show a strong correlation between the annual bioclimatic summer and winter discomfort hours and the corresponding annual cooling and heating energy load for the changing climate scenarios. Results also show an overall increase in annual cooling energy load, over and above the base case, ranging from 18% to 89% among the five cities in 2020; 32% to 132% in 2050 and 58% to 184% in 2080 if residential buildings continue to be operated in the same manner as it is done today without passive strategies. The use of passive strategies may reduce the annual cooling load by about 50%– 60% in residential buildings in future.


2016 ◽  
Vol 8 (3) ◽  
pp. 1670-1679 ◽  
Author(s):  
S. Janapriya ◽  
S. Santhana Bosu ◽  
Balaji Kannan

This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Manjalar sub basin of River Vaigai, Tamil Nadu, India carried out at the department of Soil and Water Conservation Engineering, Tamil Nadu Agricultural University during the period of 2011-2014 using Soiland Water Assessment Tool (SWAT). For the climate impact assessment the hydrological model was driven with output of bias corrected Earth System Models of the Coupled Model Intercomparison Project Phase 5 (CMIP5): HadGEM2. Climate scenarios were downscaled to a grid resolution of 0.22° x 0.22°. In this study RCP 4.5 and RCP 8.5 were included for future assessment with three future periods: 2012–2039, 2040–2069, and 2070–2098. The projected increase in maximum and minimum temperature for RCP 4.5 scenario is 0.8 to 2.3 ºC and 0.7 to 1.6 ºC and for RCP 8.5 scenario is 1.1 to 4.0 ºC and 1.0 to 3.1 ºC, respectively. Rainfall is projected to an increase between 9.2 to 15.2 per cent for RCP 4.5 scenario and an increase of 13.6 to 18.8 per cent for RCP 8.5 scenario during 21st century. The soil water storage and stream flow contribution to ground water are likely to increase in RCP 4.5 scenario and it would again decline for RCP 8.5 scenario during 21st century. The increase in annual rainfall evapotranspiration and surface runoff would be more in RCP 8.5 scenario compared to RCP 4.5 scenario. The possible changes projected by the study provide a useful input to effective planning of water resources of the study area.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

Sign in / Sign up

Export Citation Format

Share Document