scholarly journals Physiologically Based Modeling of Food Digestion and Intestinal Microbiota: State of the Art and Future Challenges. An INFOGEST Review

Author(s):  
Steven Le Feunteun ◽  
Ahmed Al-Razaz ◽  
Matthijs Dekker ◽  
Erwin George ◽  
Beatrice Laroche ◽  
...  

This review focuses on modeling methodologies of the gastrointestinal tract during digestion that have adopted a systems-view approach and, more particularly, on physiologically based compartmental models of food digestion and host–diet–microbiota interactions. This type of modeling appears very promising for integrating the complex stream of mechanisms that must be considered and retrieving a full picture of the digestion process from mouth to colon. We may expect these approaches to become more and more accurate in the future and to serve as a useful means of understanding the physicochemical processes occurring in the gastrointestinal tract, interpreting postprandial in vivo data, making relevant predictions, and designing healthier foods. This review intends to provide a scientific and historical background of this field of research, before discussing the future challenges and potential benefits of the establishment of such a model to study and predict food digestion and absorption in humans. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Iliya Gutin ◽  
Robert A. Hummer

Despite decades of progress, the future of life expectancy in the United States is uncertain due to widening socioeconomic disparities in mortality, continued disparities in mortality across racial/ethnic groups, and an increase in extrinsic causes of death. These trends prompt us to scrutinize life expectancy in a high-income but enormously unequal society like the United States, where social factors determine who is most able to maximize their biological lifespan. After reviewing evidence for biodemographic perspectives on life expectancy, the uneven diffusion of health-enhancing innovations throughout the population, and the changing nature of threats to population health, we argue that sociology is optimally positioned to lead discourse on the future of life expectancy. Given recent trends, sociologists should emphasize the importance of the social determinants of life expectancy, redirecting research focus away from extending extreme longevity and toward research on social inequality with the goal of improving population health for all. Expected final online publication date for the Annual Review of Sociology, Volume 47 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Janet D. Siliciano ◽  
Robert F. Siliciano

Although antiretroviral therapy (ART) can reduce viremia to below the limit of detection and allow persons living with HIV-1 (PLWH) to lead relatively normal lives, viremia rebounds when treatment is interrupted. Rebound reflects viral persistence in a stable latent reservoir in resting CD4+ T cells. This reservoir is now recognized as the major barrier to cure and is the focus of intense international research efforts. Strategies to cure HIV-1 infection include interventions to eliminate this reservoir, to prevent viral rebound from the reservoir, or to enhance immune responses such that viral replication is effectively controlled. Here we consider recent developments in understanding the composition of the reservoir and how it can be measured in clinical studies. We also discuss exciting new insights into the in vivo dynamics of the reservoir and the reasons for its remarkable stability. Finally we discuss recent discoveries on the complex processes that govern viral rebound. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Sébastien Marze

Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Lisa K. Torres ◽  
Peter Pickkers ◽  
Tom van der Poll

Sepsis is expected to have a substantial impact on public health and cost as its prevalence increases. Factors contributing to increased prevalence include a progressively aging population, advances in the use of immunomodulatory agents to treat a rising number of diseases, and immune-suppressing therapies in organ transplant recipients and cancer patients. It is now recognized that sepsis is associated with profound and sustained immunosuppression, which has been implicated as a predisposing factor in the increased susceptibility of patients to secondary infections and mortality. In this review, we discuss mechanisms of sepsis-induced immunosuppression and biomarkers that identify a state of impaired immunity. We also highlight immune-enhancing strategies that have been evaluated in patients with sepsis, as well as therapeutics under current investigation. Finally, we describe future challenges and the need for a new treatment paradigm, integrating predictive enrichment with patient factors that may guide the future selection of tailored immunotherapy. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Zachary Terner ◽  
Alexander Franks

In recent years, analytics has started to revolutionize the game of basketball: Quantitative analyses of the game inform team strategy; management of player health and fitness; and how teams draft, sign, and trade players. In this review, we focus on methods for quantifying and characterizing basketball gameplay. At the team level, we discuss methods for characterizing team strategy and performance, while at the player level, we take a deep look into a myriad of tools for player evaluation. This includes metrics for overall player value, defensive ability, and shot modeling, and methods for understanding performance over multiple seasons via player production curves. We conclude with a discussion on the future of basketball analytics and, in particular, highlight the need for causal inference in sports. Expected final online publication date for the Annual Review of Statistics, Volume 8 is March 8, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2001 ◽  
Vol 13 (3) ◽  
pp. 299-313 ◽  
Author(s):  
Marco Ceccarelli ◽  

In this paper a historical overview is presented dealing with the conception and development of devices that can be considered as robots today with the aim to identify the future challenges for roboticists. The historical background can be used as guidance for future successful developments when design data and requirements are recognized from historical well-established needs, problems and applications, which can be re-formulated through modern means for modern solutions. Thus, in the paper an overview of history of robotics is presented as based on main aspects and concepts.


2022 ◽  
Vol 51 (1) ◽  
Author(s):  
Marco M. Domingues ◽  
Filomena A. Carvalho ◽  
Nuno C. Santos

Mechanical properties have been extensively studied in pure elastic or viscous materials; however, most biomaterials possess both physical properties in a viscoelastic component. How the biomechanics of a fibrin clot is related to its composition and the microenvironment where it is formed is not yet fully understood. This review gives an outline of the building mechanisms for blood clot mechanical properties and how they relate to clot function. The formation of a blood clot in health conditions or the formation of a dangerous thrombus go beyond the mere polymerization of fibrinogen into a fibrin network. The complex composition and localization of in vivo fibrin clots demonstrate the interplay between fibrin and/or fibrinogen and blood cells. Studying these protein–cell interactions and clot mechanical properties may represent new methods for the evaluation of cardiovascular diseases (the leading cause of death worldwide), creating new possibilities for clinical diagnosis, prognosis, and therapy. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Vol 73 (1) ◽  
Author(s):  
Olga Serra ◽  
Ari Pekka Mähönen ◽  
Alexander J. Hetherington ◽  
Laura Ragni

The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO2. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research. Expected final online publication date for the Annual Review of Plant Biology, Volume 73 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Rheinallt M. Jones ◽  
Andrew S. Neish

It is known that the gut microbiota, the numerically vast and taxonomically diverse microbial communities that thrive in a symbiotic fashion within our alimentary tract, can affect the normal physiology of the gastrointestinal tract and liver. Further, disturbances of the microbiota community structure from both endogenous and exogenous influences as well as the failure of host responsive mechanisms have been implicated in a variety of disease processes. Mechanistically, alterations in intestinal permeability and dysbiosis of the microbiota can result in inflammation, immune activation, and exposure to xenobiotic influences. Additionally, the gut and liver are continually exposed to small molecule products of the microbiota with proinflammatory, gene regulatory, and oxidative properties. Long-term coevolution has led to tolerance and incorporation of these influences into normal physiology and homeostasis; conversely, changes in this equilibrium from either the host or the microbial side can result in a wide variety of immune, inflammatory, metabolic, and neoplastic intestinal and hepatic disorders. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 16 is January 25, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document