scholarly journals Brain Somatic Mutation in Aging and Alzheimer's Disease

Author(s):  
Michael B. Miller ◽  
Hannah C. Reed ◽  
Christopher A. Walsh

Somatic mutations arise postzygotically, producing genetic differences between cells in an organism. Well established as a driver of cancer, somatic mutations also exist in nonneoplastic cells, including in the brain. Technological advances in nucleic acid sequencing have enabled recent breakthroughs that illuminate the roles of somatic mutations in aging and degenerative diseases of the brain. Somatic mutations accumulate during aging in human neurons, a process termed genosenium. A number of recent studies have examined somatic mutations in Alzheimer's disease (AD), primarily from the perspective of genes causing familial AD. We have also gained new information on genome-wide mutations, providing insights into the cellular events driving somatic mutation and cellular dysfunction. This review highlights recent concepts, methods, and findings in the progress to understand the role of brain somatic mutation in aging and AD. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 22 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Nicole Koutsodendris ◽  
Maxine R. Nelson ◽  
Antara Rao ◽  
Yadong Huang

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2017 ◽  
Vol 217 (2) ◽  
pp. 459-472 ◽  
Author(s):  
David V. Hansen ◽  
Jesse E. Hanson ◽  
Morgan Sheng

Proliferation and activation of microglia in the brain, concentrated around amyloid plaques, is a prominent feature of Alzheimer’s disease (AD). Human genetics data point to a key role for microglia in the pathogenesis of AD. The majority of risk genes for AD are highly expressed (and many are selectively expressed) by microglia in the brain. There is mounting evidence that microglia protect against the incidence of AD, as impaired microglial activities and altered microglial responses to β-amyloid are associated with increased AD risk. On the other hand, there is also abundant evidence that activated microglia can be harmful to neurons. Microglia can mediate synapse loss by engulfment of synapses, likely via a complement-dependent mechanism; they can also exacerbate tau pathology and secrete inflammatory factors that can injure neurons directly or via activation of neurotoxic astrocytes. Gene expression profiles indicate multiple states of microglial activation in neurodegenerative disease settings, which might explain the disparate roles of microglia in the development and progression of AD pathology.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
William J. Ray ◽  
Virginie Buggia-Prevot

Genetic studies of autosomal dominant Alzheimer's disease (AD) revealed that β-amyloid is central to disease pathogenesis. However, amyloid-targeted therapies have generally failed to slow progression in patients with symptomatic disease. This result suggests a transition from an early amyloid-dependent phase to a later amyloid-independent one, during which neurodegeneration occurs and symptoms arise. Microglia, the brain's resident myeloid cells, envelop amyloid and express the majority of genes linked to risk for sporadic late-onset AD. Their activation is associated spatially and temporally with the accumulation of pathological tau. Microglial facilitation of tau pathology may involve apolipoprotein E, the most important genetic risk factor for AD. Once formed, pathological tau spreads between connected neurons, eventually accumulating in the somatic compartment where catastrophic nuclear damage ensues. This emerging understanding of the postamyloid processes leading to neurodegeneration affords the opportunity to develop therapeutics that interrupt this pathological cascade and prevent or delay dementia, even after amyloid deposition. Expected final online publication date for the Annual Review of Medicine, Volume 72 is January 27, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Natalia V. Bobkova ◽  
Vadim V. Novikov ◽  
Natalia I. Medvinskaya ◽  
Irina Yu. Aleksandrova ◽  
Eugenii E. Fesenko

Author(s):  
Burbaeva G.Sh. ◽  
Androsova L.V. ◽  
Vorobyeva E.A. ◽  
Savushkina O.K.

The aim of the study was to evaluate the rate of polymerization of tubulin into microtubules and determine the level of colchicine binding (colchicine-binding activity of tubulin) in the prefrontal cortex in schizophrenia, vascular dementia (VD) and control. Colchicine-binding activity of tubulin was determined by Sherlinе in tubulin-enriched extracts of proteins from the samples. Measurement of light scattering during the polymerization of the tubulin was carried out using the nephelometric method at a wavelength of 450-550 nm. There was a significant decrease in colchicine-binding activity and the rate of tubulin polymerization in the prefrontal cortex in both diseases, and in VD to a greater extent than in schizophrenia. The obtained results suggest that not only in Alzheimer's disease, but also in other mental diseases such as schizophrenia and VD, there is a decrease in the level of tubulin in the prefrontal cortex of the brain, although to a lesser extent than in Alzheimer's disease, and consequently the amount of microtubules.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2017 ◽  
Vol 14 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Sofia Wenzler ◽  
Christian Knochel ◽  
Ceylan Balaban ◽  
Dominik Kraft ◽  
Juliane Kopf ◽  
...  

Depression is a common neuropsychiatric manifestation among Alzheimer’s disease (AD) patients. It may compromise everyday activities and lead to a faster cognitive decline as well as worse quality of life. The identification of promising biomarkers may therefore help to timely initiate and improve the treatment of preclinical and clinical states of AD, and to improve the long-term functional outcome. In this narrative review, we report studies that investigated biomarkers for AD-related depression. Genetic findings state AD-related depression as a rather complex, multifactorial trait with relevant environmental and inherited contributors. However, one specific set of genes, the brain derived neurotrophic factor (BDNF), specifically the Val66Met polymorphism, may play a crucial role in AD-related depression. Regarding neuroimaging markers, the most promising findings reveal structural impairments in the cortico-subcortical networks that are related to affect regulation and reward / aversion control. Functional imaging studies reveal abnormalities in predominantly frontal and temporal regions. Furthermore, CSF based biomarkers are seen as potentially promising for the diagnostic process showing abnormalities in metabolic pathways that contribute to AD-related depression. However, there is a need for standardization of methodological issues and for replication of current evidence with larger cohorts and prospective studies.


2014 ◽  
Vol 13 (8) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohammad Ahmad ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Mahfoozur Rahman ◽  
Mohammad Anwar ◽  
...  

2020 ◽  
Vol 19 (9) ◽  
pp. 676-690 ◽  
Author(s):  
Roma Ghai ◽  
Kandasamy Nagarajan ◽  
Meenakshi Arora ◽  
Parul Grover ◽  
Nazakat Ali ◽  
...  

Alzheimer’s Disease (AD) is a chronic, devastating dysfunction of neurons in the brain leading to dementia. It mainly arises due to neuronal injury in the cerebral cortex and hippocampus area of the brain and is clinically manifested as a progressive mental failure, disordered cognitive functions, personality changes, reduced verbal fluency and impairment of speech. The pathology behind AD is the formation of intraneuronal fibrillary tangles, deposition of amyloid plaque and decline in choline acetyltransferase and loss of cholinergic neurons. Tragically, the disease cannot be cured, but its progression can be halted. Various cholinesterase inhibitors available in the market like Tacrine, Donepezil, Galantamine, Rivastigmine, etc. are being used to manage the symptoms of Alzheimer’s disease. The paper’s objective is to throw light not only on the cellular/genetic basis of the disease, but also on the current trends and various strategies of treatment including the use of phytopharmaceuticals and nutraceuticals. Enormous literature survey was conducted and published articles of PubMed, Scifinder, Google Scholar, Clinical Trials.org and Alzheimer Association reports were studied intensively to consolidate the information on the strategies available to combat Alzheimer’s disease. Currently, several strategies are being investigated for the treatment of Alzheimer’s disease. Immunotherapies targeting amyloid-beta plaques, tau protein and neural pathways are undergoing clinical trials. Moreover, antisense oligonucleotide methodologies are being approached as therapies for its management. Phytopharmaceuticals and nutraceuticals are also gaining attention in overcoming the symptoms related to AD. The present review article concludes that novel and traditional therapies simultaneously promise future hope for AD treatment.


Sign in / Sign up

Export Citation Format

Share Document