Hypoxia Reduction Sensitizes Refractory Cancers to Immunotherapy

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Priyamvada Jayaprakash ◽  
Paolo Dario Angelo Vignali ◽  
Greg M. Delgoffe ◽  
Michael A. Curran

In order to fuel their relentless expansion, cancers must expand their vasculature to augment delivery of oxygen and essential nutrients. The disordered web of irregular vessels that results, however, leaves gaps in oxygen delivery that foster tumor hypoxia. At the same time, tumor cells increase their oxidative metabolism to cope with the energetic demands of proliferation, which further worsens hypoxia due to heightened oxygen consumption. In these hypoxic, nutrient-deprived environments, tumors and suppressive stroma evolve to flourish while antitumor immunity collapses due to a combination of energetic deprivation, toxic metabolites, acidification, and other suppressive signals. Reversal of cancer hypoxia thus has the potential to increase the survival and effector function of tumor-infiltrating T cells, as well as to resensitize tumors to immunotherapy. Early clinical trials combining hypoxia reduction with immune checkpoint blockade have shown promising results in treating patients with advanced, metastatic, and therapeutically refractory cancers. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4416-4416
Author(s):  
Aidi Gu ◽  
Huaxian Ma ◽  
Xiaorui Zhang ◽  
Prerna Malaney ◽  
Miguel Gallardo ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is often driven by aberrant activation of the B-cell receptor signaling pathway. We and others have shown in preclinical animal models as well as human clinical trials that the BTK inhibitor, ibrutinib, is effective in reducing CLL tumor burden and improving survival rates in both humans and mice. Preclinical studies also suggest that BTK inhibitors likely act not only through their direct effect on CLL tumor cells but also by alleviating immunosuppression in the tumor microenvironment through BTK inhibition in myeloid-derived suppressor cells. Additionally, we have previously demonstrated that CLL cells are susceptible to cytotoxic killing by T cells targeting the aberrantly expressed TCL1 oncoprotein (Weng et al. Blood 2012). Therefore, we hypothesized that the combination of BTK-pathway inhibition in conjunction with activation of antigen-specific T-cells by immune checkpoint blockade will be a synergistic therapeutic strategy. Here, we examined the effect of acalabrutinib (previously known as ACP-196), a selective BTK inhibitor with limited effect on other kinases, alone or in combination with immune checkpoint blockade in a mouse model of CLL. Eµ-TCL1 mice, which overexpress TCL1 in B-cells, were used as a model of CLL. We generated cohorts of Eµ-TCL1 mice and treated them with anti-PD-1 antibody (n = 18), acalabrutinib (n = 20), and acalabrutinib+anti-PD-1 antibody (n= 19). Treatment cohorts had a significant reduction in CD5+CD19+ tumor cells in peripheral blood and spleens as compared to vehicle-treated mice (n =16) (p <0.05). However, the most pronounced anti-tumor effects were observed in mice treated with acalabrutinib alone. In fact, MRI imaging of splenic volume and flow cytometry of CD5+CD19+ cells during the treatment phase revealed that acalabrutinib monotherapy was superior to the combinatorial therapy. Even more surprising was the fact that while anti-PD-1 and acalabrutinib monotherapies provided an improvement in survival compared to vehicle treatment (p = 0.05 and p < 0.0001, respectively), the combination of these two agents actually diminished overall survival (p = 0.77). Shockingly, histopathological analyses of tumors from these acalabrutinib+anti-PD-1 treated mice revealed a significant increase in lymph node involvement and tumors with a high mitotic index. Consistent with this, we observed that treatment of CD5+CD19+ tumor cells from Eµ-TCL1 transgenic mice in vitro with anti-PD-1 antibody plus acalabrutinib markedly increased the proliferative index as measured by EdU incorporation assay compared to acalabrutinib treated group. To understand the molecular events responsible for the observed acalabrutinib+anti-PD-1 hyperproliferative phenotypes, we are examining complementary pathways that may be aberrantly activated/repressed by this combination. Currently, we have identified expression changes in both the NFkb and PKC signaling pathways when these agents are used in combination, and are working to understand how this combination may impact tumor progression. We are also assessing the possibility that anti-PD-1 interferes with the anti-tumorigenic effect of acalabrutinib by enhancing the BCR signaling pathway in CLL tumor cells. In summary, our results demonstrate that the selective BTK inhibitor, acalabrutinib greatly enhances the survival of Eµ-TCL1 mice compared to either vehicle or ibrutinib alone. Surprisingly, we found that the combination of anti-PD-1 antibody + acalabrutinib therapy is actually detrimental in this CLL model and results in a hyperprogressor phenotype. Therefore, results from ongoing clinical trials evaluating combination strategies of anti-PD-1 antibody therapy plus BTK inhibitor need to be analyzed carefully to ensure that this combination is not leading to a similar hyperprogressor phenotype in patients. The results provided here offer some initial insights into the potential mechanisms of the "hyperprogressive" phenotypes following anti-PD-1 treatment and may highlight pathways that could be useful in blocking these deleterious effects. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A120-A120
Author(s):  
Sashi Kasimsetty ◽  
Himavanth Gatla ◽  
Dhana Chinnasamy

BackgroundMCY-M11, an anti-mesothelin CAR (Meso-CAR) mRNA transfected PBMC cell product manufactured through <1 day-process is under clinical evaluation for the treatment of advanced ovarian cancer and peritoneal mesothelioma. In this in-vitro study, we characterized the phenotypic and functional status of immune cell populations in MCY-M11 and their possible role in antitumor immunity.MethodsMCY-M11 cell product were generated using unmanipulated healthy donor PBMCs (n=5) by transfection of Meso-CAR mRNA using MaxCyte’s proprietary Flow Electroporation® system. Frozen MCY-M11 cell product was thawed and cultured for 18 hours, then co-cultured with hMSLNneg or hMSLNpos human mesothelioma cell line, MSTO-211H, or stimulated with anti-CD3/anti-CD28 antibodies in vitro for 8 days. Distinct cell populations in MCY-M11 were evaluated for kinetics and duration of CAR expression, differentiation, activation, exhaustion, and their ability to secrete various immunomodulatory molecules during in vitro stimulation. Antigen-specific proliferation and cytotoxicity of MCY-M11 against hMSLNpos tumor cells as well as their ability to mount long-term antitumor immunity through epitope spreading mechanisms were studied.ResultsIndividual cell populations in MCY-M11 exhibited a consistent but transient Meso-CAR expression persisting for about 7 days. Cell subsets in MCY-M11 acquired early signs of activation and differentiation within 18–24 hours post-culture, but only attained full activation and lineage-specific differentiation upon specific response to hMSLNpos tumor cells. hMSLN antigen experienced MCY-M11 retained significant fractions of Naïve and Central Memory T cells and increased percentage of Effector Memory T cells along with increased expression of CD62L, CD27, and chemokine receptors (CCR5, CCR7, and CXCR3). MCY-M11 exhibited strong antigen-specific cytotoxicity against hMSLNpos tumor cells with corresponding increase in activation and proliferation of CD4+ and CD8+ T cell subsets and displayed low or no acquisition of known exhaustion markers. NK cells also exhibited a functionally superior molecular signature exhibiting increased levels of NKG2D, NKp44, NKp46, FAS, and TRAIL. The Monocytes and B cells in MCY-M11 also acquired an activated, differentiated, and mature phenotype, expressing molecules required for antigen presentation (HLA-DR, HLA-ABC, and CD205) and T cell co-stimulation (CD80 and CD86) to mount a strong antitumor response. These phenotypic changes in cell subsets of MCY-M11 transpired with simultaneous secretion of potent immunostimulatory molecules and chemokines facilitating an extended antitumor response through epitope spreading.ConclusionsWe demonstrated that MCY-M11 is a unique cell product possessing a complete built-in immune cellular machinery with favorable phenotype and enhanced functions specialized in mediating an effective and long-term antitumor response.Trial RegistrationNCT03608618


Author(s):  
Annette Paschen ◽  
Ignacio Melero ◽  
Antoni Ribas

Resistance to immunotherapy is due in some instances to the acquired stealth mechanisms of tumor cells that lose expression of MHC class I antigen–presenting molecules or downregulate their class I antigen–presentation pathways. Most dramatically, biallelic β2-microglobulin (B2M) loss leads to complete loss of MHC class I expression and to invisibility to CD8+ T cells. MHC class I expression and antigen presentation are potently upregulated by interferon-γ (IFNγ) in a manner that depends on IFNγ receptor (IFNGR) signaling via JAK1 and JAK2. Mutations in these molecules lead to IFNγ unresponsiveness and mediate loss of recognition and killing by cytotoxic T lymphocytes. Loss of MHC class I augments sensitivity of tumor cells to be killed by natural killer (NK) lymphocytes, and this mechanism could be exploited to revert resistance, for instance, with interleukin-2 (IL-2)-based agents. Moreover, in some experimental models, potent local type I interferon responses, such as those following intratumoral injection of Toll-like receptor 9 (TLR9) or TLR3 agonists, revert resistance due to mutations of JAKs. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Jonathan M.L. Ostrem ◽  
Kevan M. Shokat

KRAS is the most frequently mutated oncogene in cancer. Following numerous attempts to inhibit KRAS spanning multiple decades, recent efforts aimed at covalently targeting the mutant cysteine of KRAS G12C have yielded very encouraging results. Indeed, one such molecule, sotorasib, has already received accelerated US Food and Drug Administration approval with phase III clinical trials currently underway. A second molecule, adagrasib, has also progressed to phase III, and several others have entered early-phase clinical trials. The success of these efforts has inspired an array of novel approaches targeting KRAS, with some reporting extension to the two most common oncogenic KRAS mutations, G12V and G12D. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maureen G. Maguire

Clinical trials for conditions affecting the visual system need to not only conform to the guidelines for all clinical trials, but also accommodate the possibility of both eyes of a single patient qualifying for the trial. In this review, I present the interplay of the key components in the design of a clinical trial, along with the modifications or options that may be available for trials addressing ocular conditions. Examples drawn from published reports of the design and results of clinical trials of ocular conditions are provided to illustrate application of the design principles. Current approaches to data analysis and reporting of trials are outlined, and the oversight and regulatory procedures to protect participants in clinical trials are discussed. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Andrea Schmidts ◽  
Marc Wehrli ◽  
Marcela V. Maus

Adoptive transfer of T cells modified with chimeric antigen receptors (CAR-T cells) has changed the therapeutic landscape of hematological malignancies, particularly for acute lymphoblastic leukemia and large B cell lymphoma, where two different CAR-T products are now considered standard of care. Furthermore, intense research efforts are under way to expand the clinical application of CAR-T cell therapy for the benefit of patients suffering from other types of cancers. Nevertheless, CAR-T cell treatment is associated with toxicities such as cytokine release syndrome, which can range in severity from mild flu-like symptoms to life-threatening vasodilatory shock, and a neurological syndrome termed ICANS (immune effector cell–associated neurotoxicity syndrome), which can also range in severity from a temporary cognitive deficit lasting only a few hours to lethal cerebral edema. In this review, we provide an in-depth discussion of different types of CAR-T cell–associated toxicities, including an overview of clinical presentation and grading, pathophysiology, and treatment options. We also address future perspectives and opportunities, with a special focus on hematological malignancies. Expected final online publication date for the Annual Review of Medicine, Volume 72 is January 27, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 9 (1) ◽  
pp. e001481
Author(s):  
Seohyun Kim ◽  
Seong A Kim ◽  
Gi-Hoon Nam ◽  
Yeonsun Hong ◽  
Gi Beom Kim ◽  
...  

BackgroundUveal melanoma (UM) is the most frequent intraocular malignancy and is resistant to immunotherapy. Nearly 50% of patients with UM develop metastatic disease, and the overall survival outcome remains very poor. Therefore, a treatment regimen that simultaneously targets primary UM and prevents metastasis is needed. Here, we suggest an immunotherapeutic strategy for UM involving a combination of local photodynamic therapy (PDT), rho-kinase (ROCK) inhibitor, and PD-1/PD-L1 immune checkpoint blockade.MethodsThe antitumor efficacy and immune response of monotreatment or combinational treatment were evaluated in B16F10-bearing syngeneic mouse models. Abscopal antitumor immune responses induced by triple-combinational treatment were validated in syngeneic bilateral B16F10 models. After each treatment, the immune profiles and functional examinations were assessed in tumors and tumor draining lymph nodes by flow cytometry, ELISA, and immunofluorescence assays. In orthotopic intraocular melanoma models, the location of the immune infiltrate in the tumor microenvironment (TME) was evaluated after each treatment by multiplex immunohistochemistry and metastatic nodules were monitored.ResultsPDT with Ce6-embedded nanophotosensitizer (FIC-PDT) elicited immunogenic cell death and stimulated antigen-presenting cells. In situ immunogenic clearance induced by a combination of FIC-PDT with ripasudil, a clinically approved ROCK inhibitor, stimulated antigen-presenting cells, which in turn primed tumor-specific cytotoxic T cells. Moreover, local immunogenic clearance sensitized PD-1/PD-L1 immune checkpoint blockade responses to reconstruct the TME immune phenotypes of cold tumors into hot tumors, resulting in recruitment of robust cytotoxic CD8+ T cells in the TME, propagation of systemic antitumor immunity to mediate abscopal effects, and prolonged survival. In an immune-privileged orthotopic intraocular melanoma model, even low-dose FIC-PDT and ripasudil combined with anti-PD-L1 antibody reduced the primary tumor burden and prevented metastasis.ConclusionsA combination of localized FIC-PDT and a ROCK inhibitor exerted a cancer vaccine-like function. Immunogenic clearance led to the trafficking of CD8+ T cells into the primary tumor site and sensitized the immune checkpoint blockade response to evoke systemic antitumor immunity to inhibit metastasis, one of the major challenges in UM therapy. Thus, immunogenic clearance induced by FIC-PDT and ROCK inhibitor combined with anti-PD-L1 antibody could be a potent immunotherapeutic strategy for UM.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4206-4206
Author(s):  
Janani Krishnamurthy ◽  
Brian Rabinovich ◽  
Simon Olivares ◽  
Mi Teijuan ◽  
Kirsten Switzer ◽  
...  

Abstract Human endogenous retroviruses (HERVs) are ancient viruses forming 8% of human genome. One subset of HERVs, the HERV-K has recently been found to be expressed on tumor cells including melanoma, breast cancer and lymphoma but not on normal body cells. Thus, targeting HERV-K protein as a tumor associated antigen (TAA) may be a potential treatment strategy for tumors that are resistant to conventional therapies. One approach to improve therapeutic outcome is by infusing T cells rendered specific for such TAAs preferentially expressed on tumor cells. Recognition of cell-surface TAAs independent of major histocompatibility complex can be achieved by introducing a chimeric antigen receptor (CAR) on T cells using gene therapy. This approach is currently being used in our clinical trials adoptively transferring CD19-specific CAR+ T cells into patients with B-lineage malignancies. Preliminary analysis of HERV-K env protein expression in 268 melanoma samples and 139 normal organ donor tissues using immunohistochemistry demonstrated antigen expression in tumor cells and absence of expression in normal organ tissues. The scFv region from a mouse monoclonal antibody to target HERV-K env was used to generate a CAR and cloned into Sleeping Beauty (SB) plasmid for stable expression in T cells. HERV-K-specific CAR+T cells were selectively propagated ex vivo on artificial antigen presenting cells (aAPC) using an approach already in our clinical trials. Indeed, after genetic modification of T cells and selection on HERV-K+ aAPC, over 95% of propagated T cells stably expressed the introduced HERV-K-specific CAR and exhibited redirected specificity for HERV-K+ melanoma (Figure 1). Further, the adoptive transfer of HERV-K-specific CAR+T cells killed metastatic melanoma in a mouse xenograph model. While we have chosen melanoma as our tumor model, this study has the potential to be applied to other malignancies, including lymphoma and myeloma due to restricted expression of HERV-K envelope (env) protein on these tumor cells. These data demonstrate that it is feasible to generate T cells expressing a HERV-K-specific CAR using a clinically-appealing approach as a treatment strategy for HERV-K env+ tumors. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e22012-e22012 ◽  
Author(s):  
Juan Vasquez ◽  
Anita Huttner ◽  
Lin Zhang ◽  
Asher Marks ◽  
Amy Chan ◽  
...  

e22012 Background: New treatments are needed to improve outcomes for pediatric gliomas. Immune checkpoint inhibitors are effective therapies in tumors with a high mutation burden that express multiple neo-antigens. However, for pediatric tumors that carry few mutations, there is a need to identify new antigenic targets of anti-tumor immunity. SOX2 is an embryonal stem cell antigen implicated in the biology of glioma initiating cells. Expression of SOX2 by pediatric glial tumors, and the capacity of the immune system in these patients to recognize SOX2, has not been studied. Methods: We examined the expression of SOX2 on paraffin-embedded tissue from pediatric glial tumors (n = 30). The presence of T cell immunity to SOX2 was examined in both blood and tumor-infiltrating T cells using antigen-dependent cytokine and T cell proliferation assays (n = 15). The nature of tumor-infiltrating immune cells in glial tumors (n = 4) was analyzed using single cell mass cytometry. Results: SOX2 is expressed by tumor cells but not surrounding normal tissue in all low grade gliomas (n = 15), high grade gliomas (n = 7), ependymomas (n = 3) and in 60% of oligodendrogliomas (n = 5). T cells against SOX2 can be detected in blood and tumor tissue in 33% of patients. CD4 and CD8 tumor infiltrating T-cells display a higher proportion of PD-1 expression compared to circulating T cells (p < 0.05). Glial CD4 and CD8 T cells are enriched for tissue resident memory phenotype (TRM; CD45RO+, CD69+, CCR7-) and the expression of PD-1 is primarily on these TRM cells (p < 0.05). A subset of CD4 and CD8 TRM cells also co-express multiple inhibitory checkpoints including PD-L1 and TIGIT. Glial tumors also contain NK cells with reduced expression of lytic granzyme (p < 0.05). Conclusions: Our data demonstrate in vivo immunogenicity of SOX2, which is specifically overexpressed on pediatric glial tumor cells. Our data also suggest that the TRM subset of tumor-infiltrating T cells may be key targets for immune checkpoint blockade, and harnessing tumor immunity will likely require the combined targeting of multiple inhibitory checkpoints. Future efforts to target SOX2 with dendritic cell vaccines combined with immune checkpoint blockade could provide effective tumor immunity and improve outcomes in pediatric brain tumors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4631-4631
Author(s):  
Lei Xiao

New Generation Chimeric Antigen Receptor T-Cell Therapy ( CoupledCAR ) Induces High Rate Remissions in Solid Tumor Yu Liu1,Song Li2,Youli Luo3,Haixia Song4,Chengfei Pu5, Zhiyuan Cao 5, Cheng Lu5,Yang Hang5,Xi Huang5,Xiaogang Shen5 ,Xiaojun Hu3 , Renbin Liu1,Xiuwen Wang2,Junjie Mao3,Shihong Wei4 ,Zhao Wu5and Lei Xiao5* 1.The Third Affiliated Hospital, SUN YAT-SEN University 2.Qilu Hospital of Shandong University 3.The Fifth Affiliated Hospital, SUN YAT-SEN University 4.Gansu Procincial Cancer Hospital 5.Innovative Cellular Therapeutics *Corresponding to: Lei Xiao, [email protected] Chimeric antigen receptor (CAR) T cell therapy made significant progress for treating blood cancer such as leukemia, lymphoma, and myeloma. However, the therapy faces many challenges, such as physical barrier, tumor microenvironment immunosuppression, tumor heterogeneity, target specificity, and cell expansion in vivo for treatment of solid tumors Conventional CAR T cell therapy showed weak CAR T expansion in patients and thus achieved no or little response for treating solid tumors. Here, we generated "CoupledCAR" T cells including an anti-TSHR CAR molecule. Compared with conventional CART cells,these "CoupledCAR" T cells successfully improved the expansion of CART cells more than 100 times and enhanced CAR T cells' migration ability, allowing the CAR T cells to resist and infiltrate the tumor microenvironment and killed tumor cells. To verify the effect of "CoupledCAR" T cells on solid tumors, we have completed several clinical trials for different solid tumors, including two patients with thyroid cancer. Immunohistochemistry (IHC) results showed that thyroid stimulating hormone receptors (TSHR) were highly expressed in thyroid cancer cells. In vitro co-culture experiments showed that TSHR CAR T cells specifically recognized and killed TSHR-positive tumor cells. Animal experiments showed that TSHR CAR T cells inhibited the proliferation of TSHR-positive tumor cells. Therefore, we designed "CoupledCAR" T cells expressing a binding domain against TSHR. Further,we did clinical trials of two group patients that were successfully treated using conventional TSHR CAR T cells and the "CoupledCAR" T cells, respectively. In the first group using conventional TSHR CAR T cells, patients showed weak cell expansion and less migration ability. In the group using TSHR "CoupledCAR" T cells, patients showed rapid expansion of CAR T cells and killing of tumor cells. One month after infusion (M1), the patient was evaluated as PR(Partial Response): the lymph node metastasis disappeared, and thoracic paratracheal tumors decreased significantly. Three months after infusion (M3), the patient was evaluated as a durable response, and the tumor tissue was substantially smaller than M1. Further, two patients with colonrectal cancer were enrolled in this trial and infused "CoupledCAR" T cells. One patient achieved PR and the other one achieved SD (Stable Disease). Therefore, "CoupledCAR" T cells can effectively promote expansion, migration and killing ability of CAR T cells in patients with thyroid cancer. "CoupledCAR" T cell technology is a technological platform, which may be used to treat other cancer types. Next, we are recruiting more patients with solid tumors in clinical trials using "CoupledCAR" T cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document