Study on Li Metal Deposition, SEI Formation on Anodes and Cathode Potential Change during the Pre-Lithiation Process in a Cell Prepared with Laminated Porous Anodes and Cathodes

2018 ◽  
Vol 85 (13) ◽  
pp. 1507-1515 ◽  
Author(s):  
Takashi Tsuda ◽  
Nobuo Ando ◽  
Yusuke Haruki ◽  
Toyokazu Tanabe ◽  
Takao Gunji ◽  
...  
2020 ◽  
Vol 321 ◽  
pp. 07010
Author(s):  
T. Takenaka ◽  
H. Okada ◽  
R. Shimokawa ◽  
T. Morishige

The dependence of the cathodic behavior of a Ti ion on the molar ratio of CaO to TiO2 (RCaO/TiO2) was investigated in molten CaCl2 above 1373 K, and the influence of RCaO/TiO2 on Ti metal deposition was discussed. The reduction mechanism changed at RCaO/TiO2 = 1.5; a three-step reduction of Ti was suggested in the melt of RCaO/TiO2 < 1.5, while a two-step reduction seemed to occur above RCaO/TiO2 = 1.5. Titanium metal deposition was also affected by RCaO/TiO2 as well as by the cathode potential, and the suitable RCaO/TiO2 was likely 1.5. Since this value was the same as the suitable value in the molten fluoride system, Ti metal was thought to be obtained only from Ti2O76-. Silicon and Al metal were obtained electrochemically in molten CaCl2 containing calcium silicate and aluminate more easily than Ti metal. The difficulty of the Ti metal deposition is likely to be caused by the so-called shuttle reaction; the shuttle reaction can occur in the Ti metal electrolysis because some ionic states of Ti are stable in the bath. To realize better Ti metal deposition, the control of the shuttle reaction should be important.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
G. Rowden ◽  
M. G. Lewis ◽  
T. M. Phillips

Langerhans cells of mammalian stratified squamous epithelial have proven to be an enigma since their discovery in 1868. These dendritic suprabasal cells have been considered as related to melanocytes either as effete cells, or as post divisional products. Although grafting experiments seemed to demonstrate the independence of the cell types, much confusion still exists. The presence in the epidermis of a cell type with morphological features seemingly shared by melanocytes and Langerhans cells has been especially troublesome. This so called "indeterminate", or " -dendritic cell" lacks both Langerhans cells granules and melanosomes, yet it is clearly not a keratinocyte. Suggestions have been made that it is related to either Langerhans cells or melanocyte. Recent studies have unequivocally demonstrated that Langerhans cells are independent cells with immune function. They display Fc and C3 receptors on their surface as well as la (immune region associated) antigens.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


Author(s):  
T. J. Beveridge

The Bacillus subtilis cell wall provides a protective sacculus about the vital constituents of the bacterium and consists of a collection of anionic hetero- and homopolymers which are mainly polysaccharidic. We recently demonstrated that unfixed walls were able to trap and retain substantial amounts of metal when suspended in aqueous metal salt solutions. These walls were briefly mixed with low concentration metal solutions (5mM for 10 min at 22°C), were well washed with deionized distilled water, and the quantity of metal uptake (atomic absorption and X-ray fluorescence), the type of staining response (electron scattering profile of thin-sections), and the crystallinity of the deposition product (X-ray diffraction of embedded specimens) determined.Since most biological material possesses little electron scattering ability electron microscopists have been forced to depend on heavy metal impregnation of the specimen before obtaining thin-section data. Our experience with these walls suggested that they may provide a suitable model system with which to study the sites of reaction for this metal deposition.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


Author(s):  
N. Savage ◽  
A. Hackett

A cell line, UC1-B, which was derived from Balb/3T3 cells, maintains the same morphological characteristics of the non-transformed parental culture, and shows no evidence of spontaneous virus production. Survey by electron microscopy shows that the cell line consists of spindle-shaped cells with no unusual features and no endogenous virus particles.UC1-B cells respond to Moloney leukemia virus (MLV) infection by a change in morphology and growth pattern which is typical of cells transformed by sarcoma virus. Electron microscopy shows that the cells are now variable in shape (rounded, rhomboid, and spindle), and each cell type has some microvilli. Virtually all (90%) of the cells show virus particles developing at the cell surface and within the cytoplasm. Maturing viruses, typical of the oncogenic viruses, are found along with atypical tubular forms in the same cell.


Author(s):  
Fred Eiserling ◽  
A. H. Doermann ◽  
Linde Boehner

The control of form or shape inheritance can be approached by studying the morphogenesis of bacterial viruses. Shape variants of bacteriophage T4 with altered protein shell (capsid) size and nucleic acid (DNA) content have been found by electron microscopy, and a mutant (E920g in gene 66) controlling head size has been described. This mutant produces short-headed particles which contain 2/3 the normal DNA content and which are non-viable when only one particle infects a cell (Fig. 1).We report here the isolation of a new mutant (191c) which also appears to be in gene 66 but at a site distinct from E920g. The most striking phenotype of the mutant is the production of about 10% of the phage yield as “giant” virus particles, from 3 to 8 times longer than normal phage (Fig. 2).


Author(s):  
Hilton H. Mollenhauer

Various means have been devised to preserve biological specimens for electron microscopy, the most common being chemical fixation followed by dehydration and resin impregnation. It is intuitive, and has been amply demonstrated, that these manipulations lead to aberrations of many tissue elements. This report deals with three parts of this problem: specimen dehydration, epoxy embedding resins, and electron beam-specimen interactions. However, because of limited space, only a few points can be summarized.Dehydration: Tissue damage, or at least some molecular transitions within the tissue, must occur during passage of a cell or tissue to a nonaqueous state. Most obvious, perhaps, is a loss of lipid, both that which is in the form of storage vesicles and that associated with tissue elements, particularly membranes. Loss of water during dehydration may also lead to tissue shrinkage of 5-70% (volume change) depending on the tissue and dehydrating agent.


Sign in / Sign up

Export Citation Format

Share Document