The Impact of Fiber Arrangement on Power Density and Electrodeposition in Porous Ag-Trab Electrodes

2021 ◽  
Vol MA2021-01 (1) ◽  
pp. 28-28
Author(s):  
Nicholas Cross ◽  
Derek M Hall ◽  
Serguei Lvov ◽  
Bruce Logan ◽  
Matthew Rau
Author(s):  
Apangshu Das ◽  
Sambhu Nath Pradhan

Background: Output polarity of the sub-function is generally considered to reduce the area and power of a circuit at the two-level realization. Along with area and power, the power-density is also one of the significant parameter which needs to be consider, because power-density directly converges to circuit temperature. More than 50% of the modern day integrated circuits are damaged due to excessive overheating. Methods: This work demonstrates the impact of efficient power density based logic synthesis (in the form of suitable polarity selection of sub-function of Programmable Logic Arrays (PLAs) for its multilevel realization) for the reduction of temperature. Two-level PLA optimization using output polarity selection is considered first and compared with other existing techniques and then And-Invert Graphs (AIG) based multi-level realization has been considered to overcome the redundant solution generated in two-level synthesis. AIG nodes and associated power dissipation can be reduced by rewriting, refactoring and balancing technique. Reduction of nodes leads to the reduction of the area but on the contrary increases power and power density of the circuit. A meta-heuristic search approach i.e., Nondominated Sorting Genetic Algorithm-II (NSGA-II) is proposed to select the suitable output polarity of PLA sub-functions for its optimal realization. Results: Best power density based solution saves up to 8.29% power density compared to ‘espresso – dopo’ based solutions. Around 9.57% saving in area and 9.67% saving in power (switching activity) are obtained with respect to ‘espresso’ based solution using NSGA-II. Conclusion: Suitable output polarity realized circuit is converted into multi-level AIG structure and synthesized to overcome the redundant solution at the two-level circuit. It is observed that with the increase in power density, the temperature of a particular circuit is also increases.


2021 ◽  
pp. 138527
Author(s):  
Nicholas R. Cross ◽  
Derek M. Hall ◽  
Serguei N. Lvov ◽  
Bruce E. Logan ◽  
Matthew J. Rau

2010 ◽  
Vol 43 ◽  
pp. 651-656
Author(s):  
Ai Xin Feng ◽  
Yu Peng Cao ◽  
Chuan Chao Xu ◽  
Huai Yang Sun ◽  
Gui Fen Ni ◽  
...  

In the experiment, we use pulsed laser to conduct discrete scratching on Ni-containing stainless steel protective coatings to test residual stress situation after the matrix is scratched; then to analyze the the impact of the impact stress wave on coating - substrate bonding strength according to the test results, finally to infer the laser power density range within which it occurs coating failure. The study shows that: after laser discrete scratching, the residual stress of the center of the laser-loaded point on matrix surface gradually reduces when the pulsed laser power density increases. The matrix produces a corresponding residual compressive stress under the laser power density reaches a certain value. The actual failure threshold values are 12.006 GW/cm2, 11.829GW/cm2 and 12.193GW/cm2 measured by the three-dimensional topography instrument testing the discrete scratch point of three groups of samples and verified by using a microscope


2010 ◽  
Vol 645-648 ◽  
pp. 1101-1106 ◽  
Author(s):  
Jürgen Biela ◽  
Mario Schweizer ◽  
Stefan Waffler ◽  
Benjamin Wrzecionko ◽  
Johann Walter Kolar

Switching devices based on wide band gap materials as SiC oer a signicant perfor- mance improvement on the switch level compared to Si devices. A well known example are SiC diodes employed e.g. in PFC converters. In this paper, the impact on the system level perfor- mance, i.e. eciency/power density, of a PFC and of a DC-DC converter resulting with the new SiC devices is evaluated based on analytical optimisation procedures and prototype systems. There, normally-on JFETs by SiCED and normally-off JFETs by SemiSouth are considered.


Author(s):  
S. W. Cha ◽  
S. J. Lee ◽  
Y. I. Park ◽  
F. B. Prinz

This paper presents a study on the transport phenomena related to gas flow through fuel cell micro-channels, specifically the impact of dimensional scale on the order of 100 microns and below. Especially critical is the ability to experimentally verify model predictions, and this is made efficiently possible by the use of structural photopolymer (SU-8) to directly fabricate functional fuel cell micro-channels. The design and analysis components of this investigation apply 3-D multi-physics modeling to predict cell performance under micro-channel conditions. Interestingly, the model predicts that very small channels (specifically 100 microns and below) result in a significantly higher peak power density than larger counterparts. SU-8 micro-channels with different feature sizes have been integrated into fuel cell prototypes and tested for comparison against model predictions. The results not only demonstrate that the SU-8 channels with metal current collector show quite appreciable performance, but also provide experimental verification of the merits of channel miniaturization. As predicted, the performance in terms of peak power density increases as the feature size of the channel decreases, even though the pressure drop is higher in the more narrow channels. So it has been observed both theoretically and experimentally that cell performance shows an improving trend with micro-channels, and design optimization for miniature fuel cell provides a powerful method for increasing power density.


Author(s):  
Jimil M. Shah ◽  
Ravya Dandamudi ◽  
Chinmay Bhatt ◽  
Pranavi Rachamreddy ◽  
Pratik Bansode ◽  
...  

Abstract In today’s networking world, utilization of servers and data centers has been increasing significantly. Increasing demand of processing and storage of data causes a corresponding increase in power density of servers. The data center energy efficiency largely depends on thermal management of servers. Currently, air cooling is the most widely used thermal management technology in data centers. However, air cooling has started to reach its limits due to high-powered processors. To overcome these limitations of air cooling in data centers, liquid immersion cooling methods using different dielectric fluids can be a viable option. Thermal shadowing is an effect in which temperature of a cooling medium increases by carrying heat from one source and results in decreasing its heat carrying capacity due to reduction in the temperature difference between the maximum junction temperature of successive heat sink and incoming fluid. Thermal Shadowing is a challenge for both air and low velocity oil flow cooling. In this study, the impact of thermal shadowing in a third-generation open compute server using different dielectric fluids is compared. The heat sink is a critical part for cooling effectiveness at server level. This work also provides an efficient range of heat sinks with computational modelling of third generation open compute server. Optimization of heat sink can allow to cool high-power density servers effectively for single-phase immersion cooling applications. A parametric study is conducted, and significant savings in the volume of a heat sink have been reported.


Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 168 ◽  
Author(s):  
Ahmet H. Avci ◽  
Diego A. Messana ◽  
Sergio Santoro ◽  
Ramato Ashu Tufa ◽  
Efrem Curcio ◽  
...  

Ion exchange membranes (IEMs) have consolidated applications in energy conversion and storage systems, like fuel cells and battery separators. Moreover, in the perspective to address the global need for non-carbon-based and renewable energies, salinity-gradient power (SGP) harvesting by reverse electrodialysis (RED) is attracting significant interest in recent years. In particular, brine solutions produced in desalination plants can be used as concentrated streams in a SGP-RED stack, providing a smart solution to the problem of brine disposal. Although Nafion is probably the most prominent commercial cation exchange membrane for electrochemical applications, no study has investigated yet its potential in RED. In this work, Nafion 117 and Nafion 115 membranes were tested for NaCl and NaCl + MgCl2 solutions, in order to measure the gross power density extracted under high salinity gradient and to evaluate the effect of Mg2+ (the most abundant divalent cation in natural feeds) on the efficiency in energy conversion. Moreover, performance of commercial CMX (Neosepta) and Fuji-CEM 80050 (Fujifilm) cation exchange membranes, already widely applied for RED applications, were used as a benchmark for Nafion membranes. In addition, complementary characterization (i.e., electrochemical impedance and membrane potential test) was carried out on the membranes with the aim to evaluate the predominance of electrochemical properties in different aqueous solutions. In all tests, Nafion 117 exhibited superior performance when 0.5/4.0 M NaCl fed through 500 µm-thick compartments at a linear velocity 1.5 cm·s−1. However, the gross power density of 1.38 W·m−2 detected in the case of pure NaCl solutions decreased to 1.08 W·m−2 in the presence of magnesium chloride. In particular, the presence of magnesium resulted in a drastic effect on the electrochemical properties of Fuji-CEM-80050, while the impact on other membranes investigated was less severe.


Author(s):  
William Glewen ◽  
Chris Hoops ◽  
Joel Hiltner ◽  
Michael Flory

Industrial natural gas engines are used in a wide range of applications, each with unique requirements in terms of power density, initial cost, thermal efficiency, and other factors. As a result of these requirements, distinct engine designs have evolved to serve various applications. Heavy-duty spark-ignited engines can generally be divided into two broad categories based on their charge characteristics and method of emissions control. Stoichiometric engines are widely used in applications where first cost, absolute emissions and relative engine simplicity are more important than fuel consumption. In most of the developed world, stoichiometric engines are equipped with a three-way catalyst to control emissions of nitrogen oxides (NOx) as well as products of incomplete combustion and raw unburned fuel. Dilution of the charge mixture with excess air reduces the peak combustion gas temperature and associated heat rejection. As a result, lean burn engines are generally able to achieve higher efficiency and power density without inducing excessive component temperatures or end gas knock. NOx formation is mitigated by the reduced gas temperatures, such that most regulatory standards can currently be met in-cylinder. Significant obstacles exist to meeting more stringent future emissions regulations in this manner, however. Another possible strategy is to dilute the charge mixture with recirculated exhaust gas. This offers similar benefits as air dilution while maintaining the ability to use a three-way catalyst for emissions after-treatment. While similar principles apply in either case, the choice of diluent can have a significant impact on knock resistance, emissions formation, thermal efficiency, and other parameters of importance to engine developers and operators. This work aimed to examine the unique characteristics of EGR and air dilution from a thermodynamic and combustion perspective. A combination of cycle simulation tools and experimental data from a single-cylinder test engine was applied to demonstrate the impact of diluent properties on a fundamental level, and to illustrate departures from idealized behavior and practical considerations specific to the development of combustion systems for spark-ignited natural gas engines.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1840
Author(s):  
Ziwei Liang ◽  
Daniel Merced ◽  
Mojtaba Jalalpour ◽  
Hua Bai

Considering the fact that electric vehicle battery charging based on the current charging station is time-consuming, the charging technology needs to improve in order to increase charging speed, which could reduce range anxiety and benefit the user experience of electric vehicle (EV). For this reason, a 1 MW battery charging station is presented in this paper to eliminate the drawbacks of utilizing the normal 480 VAC as the system input to supply the 1 MW power, such as the low power density caused by the large volume of the 60 Hz transformer and the low efficiency caused by the high current. The proposed system utilizes the grid input of single-phase 8 kVAC and is capable of charging two electric vehicles with 500 kW each, at the same time. Therefore, this paper details how high-voltage SiC power modules are the key enabler technology, as well as the selection of a resonant-type input-series, output-parallel circuitry candidate to secure high power density and efficiency, while intelligently dealing with the transient processes, e.g., pre-charging process and power balancing among modules, and considering the impact on the grid, are both of importance.


Sign in / Sign up

Export Citation Format

Share Document