Cytokine response of primary human myotubes in an in vitro exercise model

2013 ◽  
Vol 305 (8) ◽  
pp. C877-C886 ◽  
Author(s):  
Mika Scheler ◽  
Martin Irmler ◽  
Stefan Lehr ◽  
Sonja Hartwig ◽  
Harald Staiger ◽  
...  

Muscle contraction during exercise is a major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the beneficial adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the molecular response to exercise in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold changes >1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and antioxidant defense. Multiplex immunoassays verified the translation of the transcriptional response of several cytokines into high-secretion levels (IL-6, IL-8, CXCL1, LIF, CSF3, IL-1B, and TNF) and the increased secretion of further myokines such as angiopoietin-like 4. Notably, EPS did not induce the release of creatine kinase. Inhibitor studies and immunoblotting revealed the participation of ERK1/2-, JNK-, and NF-κB-dependent pathways in the upregulation of myokines. To conclude, our data highlight the importance of skeletal muscle cells as endocrine cells. This in vitro exercise model is not only suitable to identify exercise-regulated myokines, but it might be applied to primary human myotubes obtained from different muscle biopsy donors to study the molecular mechanisms of the individual response to exercise.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas J. Pillon ◽  
Brendan M. Gabriel ◽  
Lucile Dollet ◽  
Jonathon A. B. Smith ◽  
Laura Sardón Puig ◽  
...  

AbstractThe molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Here we use gene ontology and pathway analyses to reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identify NR4A3 as one of the most exercise- and inactivity-responsive genes, and establish a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database.


2019 ◽  
Author(s):  
Nicolas J. Pillon ◽  
Brendan M. Gabriel ◽  
Lucile Dollet ◽  
Jonathon A. Smith ◽  
Laura Sardón Puig ◽  
...  

SummaryThe molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Gene ontology and pathway analyses reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identified NR4A3 as one of the most exercise- and inactivity-responsive genes, and established a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database.


2010 ◽  
Vol 109 (3) ◽  
pp. 901-905 ◽  
Author(s):  
Bingjing Wang ◽  
Zhaohui Yang ◽  
Becky K. Brisson ◽  
Huisheng Feng ◽  
Zhiqian Zhang ◽  
...  

Mutations that result in the loss of the protein dysferlin result in defective muscle membrane repair and cause either a form of limb girdle muscular dystrophy (type 2B) or Miyoshi myopathy. Most patients are compound heterozygotes, often carrying one allele with a nonsense mutation. Using dysferlin-deficient mouse and human myocytes, we demonstrated that membrane blebbing in skeletal muscle myotubes in response to hypotonic shock requires dysferlin. Based on this, we developed an in vitro assay to assess rescue of dysferlin function in skeletal muscle myotubes. This blebbing assay may be useful for drug discovery/validation for dysferlin deficiency. With this assay, we demonstrate that the nonsense suppression drug, ataluren (PTC124), is able to induce read-through of the premature stop codon in a patient with a R1905X mutation in dysferlin and produce sufficient functional dysferlin (∼15% of normal levels) to rescue myotube membrane blebbing. Thus ataluren is a potential therapeutic for dysferlin-deficient patients harboring nonsense mutations.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S85-S86
Author(s):  
Bo-Kyung Son ◽  
Masato Eto ◽  
Miya Oura ◽  
Masahiro Akishita

Abstract Background: Physical exercise is well documented to induce muscle size, strength, and energy metabolism. Although the contribution of systemic or local androgen in exercise-adapted muscle hypertrophy has been suggested, less is known about the molecular pathway of androgen in response to exercise. In the present study, we examined roles of androgen/androgen receptor (AR) after exercise, especially for the suppression of myostatin, a potent negative regulator of muscle mass. Methods and Results: To examine the effects of exercise, we employed low-intensity exercise in mice and electric pulse stimulation (EPS) in C2C12 myotubes. Both mRNA and protein levels of AR significantly increased in skeletal muscle of low-intensity exercised mice and C2C12 myotubes exposed to EPS. Production of testosterone and DHT from EPS-treated C2C12 myotubes was markedly increased. Of interest, we found that myostatin was clearly inhibited by EPS, and its inhibition was significantly abrogated by flutamide, a specific antagonist of AR. Furthermore, IL-6 and phospho-STAT3 (pSTAT3) expression, the downstream pathway of myostatin, were decreased by EPS and this was also reversed by flutamide. Similar downregulation of myostatin and IL-6 was seen in skeletal muscle of low-intensity exercised mice. Conclusion: Muscle AR expression and androgen production were increased by exercise and EPS treatment. As a mechanistical insight, it is suggested that AR inhibited myostatin expression transcriptionally, which downregulates IL-6/pSTAT3 pathway and thus contributes to the prevention of muscle degradation.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 430 ◽  
Author(s):  
AL-Ishaq ◽  
Abotaleb ◽  
Kubatka ◽  
Kajo ◽  
Büsselberg

Diabetes mellitus (DM) is a prevailing global health metabolic disorder, with an alarming incidence rate and a huge burden on health care providers. DM is characterized by the elevation of blood glucose due either to a defect in insulin synthesis, secretion, binding to receptor, or an increase of insulin resistance. The internal and external factors such as obesity, urbanizations, and genetic mutations could increase the risk of developing DM. Flavonoids are phenolic compounds existing as secondary metabolites in fruits and vegetables as well as fungi. Their structure consists of 15 carbon skeletons and two aromatic rings (A and B) connected by three carbon chains. Flavonoids are furtherly classified into 6 subclasses: flavonols, flavones, flavanones, isoflavones, flavanols, and anthocyanidins. Naturally occurring flavonoids possess anti-diabetic effects. As in vitro and animal model’s studies demonstrate, they have the ability to prevent diabetes and its complications. The aim of this review is to summarize the current knowledge addressing the antidiabetic effects of dietary flavonoids and their underlying molecular mechanisms on selected pathways: Glucose transporter, hepatic enzymes, tyrosine kinase inhibitor, AMPK, PPAR, and NF-κB. Flavonoids improve the pathogenesis of diabetes and its complications through the regulation of glucose metabolism, hepatic enzymes activities, and a lipid profile. Most studies illustrate a positive role of specific dietary flavonoids on diabetes, but the mechanisms of action and the side effects need more clarification. Overall, more research is needed to provide a better understanding of the mechanisms of diabetes treatment using flavonoids.


2008 ◽  
Vol 295 (5) ◽  
pp. H2043-H2045 ◽  
Author(s):  
Jennifer L. McCord ◽  
Shawn G. Hayes ◽  
Marc P. Kaufman

Pyridoxal-phosphate-6-azophenyl-2′-4-disulfonate (PPADS), a purinergic 2 (P2) receptor antagonist, has been shown to attenuate the exercise pressor reflex in cats. In vitro, however, PPADS has been shown to block the production of prostaglandins, some of which play a role in evoking the exercise pressor reflex. Thus the possibility exists that PPADS blocks the exercise pressor reflex through a reduction in prostaglandin synthesis rather than through the blockade of P2 receptors. Using microdialysis, we collected interstitial fluid from skeletal muscle to determine prostaglandin E2 (PGE2) concentrations during the intermittent contraction of the triceps surae muscle before and after a popliteal arterial injection of PPADS (10 mg/kg). We found that the PGE2 concentration increased in response to the intermittent contraction before and after the injection of PPADS (both, P < 0.05). PPADS reduced the pressor response to exercise ( P < 0.05) but had no effect on the magnitude of PGE2 production during contraction ( P = 0.48). These experiments demonstrate that PPADS does not block the exercise pressor reflex through a reduction in PGE2 synthesis. We suggest that PGE2 and P2 receptors play independent roles in stimulating the exercise pressor reflex.


2019 ◽  
Vol 20 (4) ◽  
pp. 911 ◽  
Author(s):  
Yongxia Li ◽  
Fanli Meng ◽  
Xun Deng ◽  
Xuan Wang ◽  
Yuqian Feng ◽  
...  

Bursaphelenchus xylophilus is fatal to the pine trees around the world. The production of the pine tree secondary metabolite gradually increases in response to a B. xylophilus infestation, via a stress reaction mechanism(s). α-pinene is needed to combat the early stages of B. xylophilus infection and colonization, and to counter its pathogenesis. Therefore, research is needed to characterize the underlying molecular response(s) of B. xylophilus to resist α-pinene. We examined the effects of different concentrations of α-pinene on the mortality and reproduction rate of B. xylophilus in vitro. The molecular response by which B. xylophilus resists α-pinene was examined via comparative transcriptomics of the nematode. Notably, B. xylophilus genes involved in detoxification, transport, and receptor activities were differentially expressed in response to two different concentrations of α-pinene compared with control. Our results contribute to our understanding of the molecular mechanisms by which B. xylophilus responds to monoterpenes in general, and the pathogenesis of B. xylophilus.


2010 ◽  
Vol 207 (12) ◽  
pp. 2631-2645 ◽  
Author(s):  
Véronique Witko-Sarsat ◽  
Julie Mocek ◽  
Dikra Bouayad ◽  
Nicola Tamassia ◽  
Jean-Antoine Ribeil ◽  
...  

Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand– or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4683-4683
Author(s):  
Álvaro Cuesta-Domínguez ◽  
Mara Ortega ◽  
Cristina Ormazabal ◽  
Matilde Santos-Roncero ◽  
Marta Galán-Díez ◽  
...  

Abstract Abstract 4683 Chromosomal translocations in human tumors frequently produce fusion genes whose chimeric protein products play an essential role in oncogenesis. Recent reports have found a BCR-JAK2 fusion gene in cases of chronic or acute myeloid leukemia, but the protein had not been characterized. We describe a BCR-JAK2 fusion gene by fluorescence in situ hybridization and RT-PCR amplification from bone marrow at diagnosis of a patient with acute lymphoblastic leukemia. After induction therapy, real time PCR showed persistent molecular response correlating with hematological remission maintained up to present. BCR-JAK2 is a 110 KDa chimeric protein containing the BCR oligomerization domain fused to the JAK2 tyrosine-kinase domain. In vitro analysis showed that BCR-JAK2 was constitutively phosphorylated and was located to the cytoplasm. BCR-JAK2 transformed the IL-3-dependent murine hematopoietic cell line Ba/F3 into IL-3 independent growth and induced STAT5b phosphorylation and translocation into the cell nuclei. The treatment with a JAK2 inhibitor abrogated BCR-JAK2 and STAT5b phosphorylation, leading to apoptosis of transformed Ba/F3 cells. To test whether BCR-JAK2 has tumorogenic ability in vivo, we performed experiments with nude mice, in which we injected subcutaneously cells transduced with the control vector and cells expressing BCR-JAK2. Notably, we only obtained tumors in the flank injected with BCR-JAK2 expressing cells, thus confirming the tumorogenic activity of the BCR-JAK2 fusion protein. We conclude that BCR-JAK2 is a new tyrosine-kinase that induces proliferation and cell survival, which can be abrogated by JAK2 inhibitors. In vitro studies demonstrate that BCR-JAK2 displays transforming activity. Moreover, the nude mice model reveals its ability to cause tumors. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 287 (2) ◽  
pp. C484-C493 ◽  
Author(s):  
Minenori Ishido ◽  
Katsuya Kami ◽  
Mitsuhiko Masuhara

MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycle withdrawal and antiapoptotic cell death. Using immunohistochemical approaches, we characterized cell types expressing MyoD, p21, and Rb and the relationship among these factors in the myonucleus of denervated muscles. In addition, we quantitatively examined the time course changes and expression patterns among distinct myofiber types of MyoD, p21, and Rb during denervation. Denervation induced MyoD expression in myonuclei and satellite cell nuclei, whereas p21 and Rb were found only in myonuclei. Furthermore, coexpression of MyoD, p21, and Rb was induced in the myonucleus, and quantitative analysis of these factors determined that there was no difference among the three myofiber types. These observations suggest that MyoD may function in myonuclei in response to denervation to protect against denervation-induced apoptosis via perhaps the activation of p21 and Rb, and function of MyoD expressed in satellite cell nuclei may be negatively regulated. The present study provides a molecular basis to further understand the function of MyoD expressed in the myonuclei and satellite cell nuclei of denervated skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document