Imaging of oxygen gradients in monolayer cultured cells using green fluorescent protein

2010 ◽  
Vol 299 (6) ◽  
pp. C1318-C1323 ◽  
Author(s):  
Eiji Takahashi ◽  
Michihiko Sato

Gradients of Po2 between capillary blood and mitochondria are the driving force for diffusional O2 delivery in tissues. Hypoxic microenvironments in tissues that result from diffusional O2 gradients are especially relevant in solid tumors because they have been related to a poor prognosis. To address the impact of tissue O2 gradients, we developed a novel technique that permits imaging of intracellular O2 levels in cultured cells at a subcellular spatial resolution. This was done, with the sensitivity to O2 ≤3%, by the O2-dependent red shift of green fluorescent protein (AcGFP1) fluorescence. Measurements were carried out in a confluent monolayer of Hep3B cells expressing AcGFP1 in the cytoplasm. To establish a two-dimensional O2 diffusion model, a thin quartz glass slip was placed onto the monolayer cells to prevent O2 diffusion from the top surface of the cell layer. The magnitude of the red shift progressively increased as the distance from the gas coverslip interface increased. It reached an anoxic level in cells located at ∼220 μm and ∼690 μm from the gas coverslip boundary at 1% and 3% gas phase O2, respectively. Thus the average O2 gradient was 0.03 mmHg/μm in the present tissue model. Abolition of mitochondrial respiration significantly dampened the gradients. Furthermore, intracellular gradients of the red shift in mitochondria-targeted AcGFP1 in single Hep3B cells suggest that the origin of tissue O2 gradients is intracellular. Findings in the present two-dimensional O2 diffusion model support the crucial role of tissue O2 diffusion in defining the O2 microenvironment in individual cells.

1999 ◽  
Vol 112 (16) ◽  
pp. 2705-2714
Author(s):  
E.M. Burns ◽  
L. Christopoulou ◽  
P. Corish ◽  
C. Tyler-Smith

We have measured the mitotic loss rates of mammalian chromosomes in cultured cells. The green fluorescent protein (GFP) gene was incorporated into a non-essential chromosome so that cells containing the chromosome fluoresced green, while those lacking it did not. The proportions of fluorescent and non-fluorescent cells were measured by fluorescence activated cell sorter (FACS) analysis. Loss rates ranged from 0.005% to 0.20% per cell division in mouse LA-9 cells, and from 0.02% to 0.40% in human HeLa cells. The rate of loss was elevated by treatment with aneugens, demonstrating that the system rapidly identifies agents which induce chromosome loss in mammalian cells.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 655 ◽  
Author(s):  
Yíngyún Caì ◽  
Masaharu Iwasaki ◽  
Brett Beitzel ◽  
Shuīqìng Yú ◽  
Elena Postnikova ◽  
...  

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000–300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


2010 ◽  
Vol 76 (18) ◽  
pp. 6119-6127 ◽  
Author(s):  
Putthapoom Lumjiaktase ◽  
Claudio Aguilar ◽  
Tom Battin ◽  
Kathrin Riedel ◽  
Leo Eberl

ABSTRACT Many bacteria utilize quorum sensing (QS) systems to communicate with each other by means of the production, release, and response to signal molecules. N-Acyl homoserine lactone (AHL)-based QS systems are particularly widespread among the Proteobacteria, in which they regulate various functions. It has become evident that AHLs can also serve as signals for interspecies communication. However, knowledge on the impact of AHLs for the ecology of bacteria in their natural habitat is scarce, due mainly to the lack of tools that allow the study of QS in bacterial communities in situ. Here, we describe the construction of self-mobilizable green fluorescent protein (GFP)-based AHL sensors that utilize the conjugation and replication properties of the broad-host-range plasmid RP4. We show that these novel AHL sensor plasmids can be easily transferred to different bacterial species by biparental mating and that they give rise to green fluorescent cells in case the recipient is an AHL producer. We also demonstrate that these sensor plasmids are capable of self-spreading within mixed biofilms and are a suitable tool for the identification of AHL-producing bacteria in lake sediment.


2012 ◽  
Vol 140 (3) ◽  
pp. 249-266 ◽  
Author(s):  
Mehdi Najafi ◽  
Mohammad Haeri ◽  
Barry E. Knox ◽  
William E. Schiesser ◽  
Peter D. Calvert

G protein–coupled receptor (GPCR) cascades rely on membrane protein diffusion for signaling and are generally found in spatially constrained subcellular microcompartments. How the geometry of these microcompartments impacts cascade activities, however, is not understood, primarily because of the inability of current live cell–imaging technologies to resolve these small structures. Here, we examine the dynamics of the GPCR rhodopsin within discrete signaling microcompartments of live photoreceptors using a novel high resolution approach. Rhodopsin fused to green fluorescent protein variants, either enhanced green fluorescent protein (EGFP) or the photoactivatable PAGFP (Rho-E/PAGFP), was expressed transgenically in Xenopus laevis rod photoreceptors, and the geometries of light signaling microcompartments formed by lamellar disc membranes and their incisure clefts were resolved by confocal imaging. Multiphoton fluorescence relaxation after photoconversion experiments were then performed with a Ti–sapphire laser focused to the diffraction limit, which produced small sub–cubic micrometer volumes of photoconverted molecules within the discrete microcompartments. A model of molecular diffusion was developed that allows the geometry of the particular compartment being examined to be specified. This was used to interpret the experimental results. Using this unique approach, we showed that rhodopsin mobility across the disc surface was highly heterogeneous. The overall relaxation of Rho-PAGFP fluorescence photoactivated within a microcompartment was biphasic, with a fast phase lasting several seconds and a slow phase of variable duration that required up to several minutes to reach equilibrium. Local Rho-EGFP diffusion within defined compartments was monotonic, however, with an effective lateral diffusion coefficient Dlat = 0.130 ± 0.012 µm2s−1. Comparison of rhodopsin-PAGFP relaxation time courses with model predictions revealed that microcompartment geometry alone may explain both fast local rhodopsin diffusion and its slow equilibration across the greater disc membrane. Our approach has for the first time allowed direct examination of GPCR dynamics within a live cell signaling microcompartment and a quantitative assessment of the impact of compartment geometry on GPCR activity.


2018 ◽  
Vol 81 (8) ◽  
pp. 1364-1372 ◽  
Author(s):  
RINARA C. KIEL ◽  
JENNIFER N. MARTIN ◽  
DALE R. WOERNER ◽  
RACHEL MURPHY ◽  
IFIGENIA GEORNARAS ◽  
...  

ABSTRACT Contamination of rendered products with Salmonella is a concern for the rendering industry, particularly when those products are intended for use in other foodstuffs, such as pet food. This study was conducted to understand the influence of compositional variation on the location and survivability of Salmonella in a poultry fat matrix. Specifically, this study aimed to (i) assess the influence of postinoculation time and moisture content on the distribution of Salmonella in rendered poultry fat and (ii) evaluate the impact of postinoculation time and physical parameters (i.e., impurity level and moisture content) on survival of three Salmonella strains in rendered poultry fat stored at two different temperatures. Three studies, designated as study I(a), I(b), and II, respectively, were conducted to address these objectives. In study I(a), a green fluorescent protein–expressing strain of Salmonella Typhimurium was used to map the organism within warmed (45°C) poultry fat containing various levels of moisture. In study I(b), the influence of storage temperature on the survivability of green fluorescent protein–expressing Salmonella was evaluated. In study II, the impacts of physical impurities, moisture content, and storage temperature on the survivability of three Salmonella strains (Enteritidis, Senftenberg, and Typhimurium) were assessed. The results of this study demonstrated that composition (i.e., moisture and impurity contents) influences the survivability of Salmonella in poultry fat; specifically, Salmonella is more persistent in poultry fat with a greater moisture content and water activity. Nonetheless, although composition impacts the distribution and survivability of Salmonella in poultry fat, Salmonella generally does not survive in poultry fat maintained at high temperatures (45°C and above).


2020 ◽  
Vol 33 ◽  
Author(s):  
Majid Masso

Abstract A computational mutagenesis technique was used to characterize the structural effects associated with over 46 000 single and multiple amino acid variants of Aequorea victoria green fluorescent protein (GFP), whose functional effects (fluorescence levels) were recently measured by experimental researchers. For each GFP mutant, the approach generated a single score reflecting the overall change in sequence-structure compatibility relative to native GFP, as well as a vector of environmental perturbation (EP) scores characterizing the impact at all GFP residue positions. A significant GFP structure–function relationship (P < 0.0001) was elucidated by comparing the sequence-structure compatibility scores with the functional data. Next, the computed vectors for GFP mutants were used to train predictive models of fluorescence by implementing random forest (RF) classification and tree regression machine learning algorithms. Classification performance reached 0.93 for sensitivity, 0.91 for precision and 0.90 for balanced accuracy, and regression models led to Pearson’s correlation as high as r = 0.83 between experimental and predicted GFP mutant fluorescence. An RF model trained on a subset of over 1000 experimental single residue GFP mutants with measured fluorescence was used for predicting the 3300 remaining unstudied single residue mutants, with results complementing known GFP biochemical and biophysical properties. In addition, models trained on the subset of experimental GFP mutants harboring multiple residue replacements successfully predicted fluorescence of the single residue GFP mutants. The models developed for this study were accurate and efficient, and their predictions outperformed those of several related state-of-the-art methods.


2006 ◽  
Vol 291 (4) ◽  
pp. C781-C787 ◽  
Author(s):  
Eiji Takahashi ◽  
Tomohiro Takano ◽  
Yasutomo Nomura ◽  
Satoshi Okano ◽  
Osamu Nakajima ◽  
...  

In vivo oxygen measurement is the key to understanding how biological systems dynamically adapt to reductions in oxygen supply. High spatial resolution oxygen imaging is of particular importance because recent studies address the significance of within-tissue and within-cell heterogeneities in oxygen concentration in health and disease. Here, we report a new technique for in vivo molecular imaging of oxygen in organs using green fluorescent protein (GFP). GFP-expressing COS-7 cells were briefly photoactivated with a strong blue light while lowering the oxygen concentration from 10% to <0.001%. Red fluorescence (excitation 520–550 nm, emission >580 nm) appeared after photoactivation at <2% oxygen (the red shift of GFP fluorescence). The red shift disappeared after reoxygenation of the cell, indicating that the red shift is stable as long as the cell is hypoxic. The red shift of GFP fluorescence was also demonstrated in single cardiomyocytes isolated from the GFP knock-in mouse (green mouse) heart. Then, we tried in vivo molecular imaging of hypoxia in organs. The red shift could be imaged in the ischemic liver and kidney in the green mouse using macroscopic optics provided that oxygen diffusion from the atmospheric air was prevented. In crystalloid-perfused beating heart isolated from the green mouse, significant spatial heterogeneities in the red shift were demonstrated in the epicardium distal to the coronary artery ligation. We conclude that the present technique using GFP as an oxygen indicator may allow in vivo molecular imaging of oxygen in organs.


Sign in / Sign up

Export Citation Format

Share Document