scholarly journals Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease

2020 ◽  
Vol 319 (5) ◽  
pp. C877-C884
Author(s):  
Suli Zhang ◽  
Marcelo G. Kazanietz ◽  
Mariana Cooke

Tunneling nanotubes (TNTs) emerged as important specialized actin-rich membrane protrusions for cell-to-cell communication. These structures allow the intercellular exchange of material, such as ions, soluble proteins, receptors, vesicles and organelles, therefore exerting critical roles in normal cell function. Indeed, TNTs participate in a number of physiological processes, including embryogenesis, immune response, and osteoclastogenesis. TNTs have been also shown to contribute to the transmission of retroviruses (e.g., human immunodeficiency virus-1, HIV-1) and coronaviruses. As with other membrane protrusions, the involvement of Rho GTPases in the formation of these elongated structures is undisputable, although the mechanisms involved are not yet fully elucidated. The tight control of Rho GTPase function by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) strongly suggests that localized control of these Rho regulators may contribute to TNT assembly and disassembly. Deciphering the intricacies of the complex signaling mechanisms leading to actin reorganization and TNT development would reveal important information about their involvement in normal cellular physiology as well as unveil potential targets for disease management.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1422
Author(s):  
Jero Vicente-Soler ◽  
Teresa Soto ◽  
Alejandro Franco ◽  
José Cansado ◽  
Marisa Madrid

The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine–nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.


2019 ◽  
Author(s):  
Nathalie R. Reinhard ◽  
Sanne van der Niet ◽  
Anna Chertkova ◽  
Marten Postma ◽  
Peter L. Hordijk ◽  
...  

AbstractThe Rho GTPase family is involved in actin dynamics and regulates the barrier function of the endothelium. One of the main barrier-promoting Rho GTPases is Cdc42, also known as cell division control protein 42 homolog. Currently, regulation of Cdc42-based signaling networks in endothelial cells (ECs) lack molecular details. To examine these, we focused on a subset of 15 Rho guanine nucleotide exchange factors (GEFs), which are expressed in the endothelium. By performing single cell FRET measurements with Rho GTPase biosensors in primary human ECs, we monitored GEF efficiency towards Cdc42 and Rac1. A new, single cell-based analysis was developed and used to enable the quantitative comparison of cellular activities of the full-length GEFs. Our data reveal a specific GEF dependent activation profile, with most efficient Cdc42 activation induced by PLEKHG2, FGD1, PLEKHG1 and pRex1 and the highest selectivity for FGD1. Additionally, we generated truncated GEF constructs that comprise only the catalytic dbl homology (DH) domain or together with the adjacent pleckstrin homology domain (DHPH). The DH domain by itself did not activate Cdc42, whereas the DHPH domain of ITSN1, ITSN2 and PLEKHG1 showed activity towards Cdc42. Together, our study characterized endothelial GEFs that may activate Cdc42, which will be of great value for the field of vascular biology.Abstract FigureGraphical Abstract


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1859
Author(s):  
Laura Streit ◽  
Laurent Brunaud ◽  
Nicolas Vitale ◽  
Stéphane Ory ◽  
Stéphane Gasman

Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 351 ◽  
Author(s):  
Héraud ◽  
Pinault ◽  
Lagrée ◽  
Moreau

Small guanosine triphosphatases (GTPases) gathered in the Rat sarcoma (Ras) superfamily represent a large family of proteins involved in several key cellular mechanisms. Within the Ras superfamily, the Ras homolog (Rho) family is specialized in the regulation of actin cytoskeleton-based mechanisms. These proteins switch between an active and an inactive state, resulting in subsequent inhibiting or activating downstream signals, leading finally to regulation of actin-based processes. The On/Off status of Rho GTPases implicates two subsets of regulators: GEFs (guanine nucleotide exchange factors), which favor the active GTP (guanosine triphosphate) status of the GTPase and GAPs (GTPase activating proteins), which inhibit the GTPase by enhancing the GTP hydrolysis. In humans, the 20 identified Rho GTPases are regulated by over 70 GAP proteins suggesting a complex, but well-defined, spatio-temporal implication of these GAPs. Among the quite large number of RhoGAPs, we focus on p190RhoGAP, which is known as the main negative regulator of RhoA, but not exclusively. Two isoforms, p190A and p190B, are encoded by ARHGAP35 and ARHGAP5 genes, respectively. We describe here the function of each of these isoforms in physiological processes and sum up findings on their role in pathological conditions such as neurological disorders and cancers.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1092 ◽  
Author(s):  
Brock A. Humphries ◽  
Zhishan Wang ◽  
Chengfeng Yang

The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.


2014 ◽  
Vol 207 (5) ◽  
pp. 577-587 ◽  
Author(s):  
Christopher P. Toret ◽  
Caitlin Collins ◽  
W. James Nelson

Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shane P. Comer

Platelet cytoskeletal reorganisation is a critical component of platelet activation and thrombus formation in haemostasis. The Rho GTPases RhoA, Rac1 and Cdc42 are the primary drivers in the dynamic reorganisation process, leading to the development of filopodia and lamellipodia which dramatically increase platelet surface area upon activation. Rho GTPases cycle between their active (GTP-bound) and inactive (GDP-bound) states through tightly regulated processes, central to which are the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyse the dissociation of GDP by inducing changes in the nucleotide binding site, facilitating GTP binding and activating Rho GTPases. By contrast, while all GTPases possess intrinsic hydrolysing activity, this reaction is extremely slow. Therefore, GAPs catalyse the hydrolysis of GTP to GDP, reverting Rho GTPases to their inactive state. Our current knowledge of these proteins is constantly being updated but there is considerably less known about the functionality of Rho GTPase specific GAPs and GEFs in platelets. In the present review, we discuss GAP and GEF proteins for Rho GTPases identified in platelets, their regulation, biological function and present a case for their further study in platelets.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 749 ◽  
Author(s):  
Rafael Dominik Fritz ◽  
Olivier Pertz

Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 80-80
Author(s):  
Abel Sanchez-Aguilera ◽  
Yun-Jung Lee ◽  
Cristina Lo Celso ◽  
Kristina Brumme ◽  
Charles P Lin ◽  
...  

Abstract Abstract 80 Background: Rho GTPases are molecular switches that regulate actin cytoskeleton dynamics, cell proliferation and survival. In hematopoietic stem cells and progenitors (HSC/P), several Rho GTPases (including Rac1, Rac2 and Cdc42) function as critical regulators of engraftment through the integration of diverse extracellular signals, such as those transmitted by growth factor, chemokine and adhesion receptors. In addition, Rac-deficient mice show significantly increased numbers of mobilized HSC/P. GTPase activation downstream of these and other receptors is mediated by a large family of guanine nucleotide exchange factors (GEF). Functional interactions between receptors, GEF and Rho GTPases are potentially complex and the crucial biochemical pathways regulating HSC activity have not been defined. Among the Rho/Rac GEFs, Vav1 shows hematopoietic-specific expression and has been previously implicated in immune cell processes, such as immunoreceptor signaling in lymphocytes and neutrophil migration. To further explore the mechanism of Rho GTPase regulation of HSC engraftment, we investigated the role of Vav1 GEF in Rho GTPase activation after ligation of multiple HSC receptors and the effect of genetic deletion of Vav1 on HSC homing, retention and engraftment in the hematopoietic microenvironment. Methods: GTPase activation (Rac, Cdc42, RhoA) was analyzed by in vitro pulldown assays. The HSC/P compartment of Vav1−/− mice was studied by flow cytometry, colony forming cell (CFC) assays, progenitor (CFC) homing, competitive and non-competitive repopulation assays. HSC localization in the endosteal niche was determined by intravital microscopy 1 h and 48 h after transplant. Results: At the biochemical level, Vav1−/− hematopoietic progenitors showed a dysfunctional Rho GTPase activation pattern, with increased baseline levels of GTP-bound Rac, Cdc42 and RhoA; however, in the absence of Vav1, these GTPases were unresponsive to stimulation by stem cell factor and SDF1α, critical proteins in HSC engraftment. In spite of this biochemical abnormality, Vav1−/− mice at baseline had nearly normal numbers of immunophenotypically defined HSC, myeloid and lymphoid progenitors in the bone marrow (BM), and normal hematopoietic progenitor content as defined by CFC, although reduced rather than increased circulating HSC/P. Vav1−/− HSC/P transplanted into irradiated recipients exhibited normal BM CFC homing efficiency (∼5%) and normal early endosteal localization of HSC in vivo (1 h after injection) as determined by intravital microscopy. Surprisingly-but in concordance with the normal BM homing of HSC/P in vivo- the loss of Vav1 did not affect hematopoietic progenitor chemotaxis or short-term adhesion to fibronectin in vitro. However, there was a significant decrease in the retention of HSC in the endosteal space at 48 h after transplant (Vav1−/− HSC numbers were reduced to 46%, relative to WT HSC) and this defect was associated with a profound loss of short- and long-term engraftment. In competitive repopulation assays, Vav1−/− cells virtually did not contribute to the graft (Table 1), whereas in a non-competitive setting, they either failed to rescue the recipient (60% survival vs 100% at 1 month, Vav1−/− vs WT) or showed significantly delayed hematopoietic reconstitution (Table 2). Conclusions: The hematopoietic-specific GEF Vav1 is essential for the appropriate microenvironment-induced Rho GTPase activation in HSC/P after transplant and is required for the retention of HSC/P in the BM endosteal niche and subsequent engraftment. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 366 (2) ◽  
pp. 393-398 ◽  
Author(s):  
Alexandra GAMPEL ◽  
Harry MELLOR

Rho GTPases control a complex network of intracellular signalling pathways. Whereas progress has been made in identifying downstream signalling partners for these proteins, the characterization of Rho upstream regulatory guanine-nucleotide exchange factors (GEFs) has been hampered by a lack of suitable research tools. Here we use small interfering RNAs (siRNAs) to examine the cellular regulation of the RhoB GTPase, and show that RhoB is activated downstream of the epidermal-growth-factor receptor through the Vav2 exchange factor. These studies demonstrate that siRNAs are an ideal research tool for the assignment of Rho GEF function in vivo.


Sign in / Sign up

Export Citation Format

Share Document