Detection of ClC-3 and ClC-5 in epididymal epithelium: immunofluorescence and RT-PCR after LCM

2003 ◽  
Vol 284 (1) ◽  
pp. C220-C232 ◽  
Author(s):  
Corinne Isnard-Bagnis ◽  
Nicolas Da Silva ◽  
Valérie Beaulieu ◽  
Alan S. L. Yu ◽  
Dennis Brown ◽  
...  

Epithelial cells of the epididymis and vas deferens establish an optimum luminal environment in which spermatozoa mature and are stored. This is achieved by active transepithelial transport of various ions including Cl−and H+. We investigated the localization of three closely related members of the ClC family, ClC-3, ClC-4, and ClC-5, in the epididymis and vas deferens. RT-PCR using mRNA isolated by laser capture microdissection (LCM)-detected ClC-3 and ClC-5 transcripts but did not detect any ClC-4-specific transcript. Western blot and immunofluorescence analysis demonstrated that ClC-3 and ClC-5 proteins are present in all regions of the epididymis and in the vas deferens. ClC-5 is expressed exclusively in H+-ATPase-rich cells (narrow and clear cells). Confocal microscopy showed that ClC-5 partially colocalizes with the H+-ATPase in the subapical pole of clear cells. ClC-3 is strongly expressed in the apical membrane of principal cells of the caput epididymidis and the vas deferens and is less abundant in principal cells of the body and cauda epididymidis. These findings are consistent with a potential role for ClC-3 in transepithelial chloride transport by principal cells and for ClC-5 in the acidification of H+-ATPase-containing vesicles in narrow and clear cells. ClC-5 might facilitate endosome trafficking in the epididymis, as has been proposed in the kidney.

Author(s):  
Vera D. Rinaldi ◽  
Elisa Donnard ◽  
Kyle J. Gellatly ◽  
Morten Rasmussen ◽  
Alper Kucukural ◽  
...  

ABSTRACTFollowing spermatogenesis in the testis, mammalian sperm continue to mature over the course of approximately 10 days as they transit a long epithelial tube known as the epididymis. The epididymis is comprised of multiple segments/compartments that, in addition to concentrating sperm and preventing their premature activation, play key roles in remodeling the protein, lipid, and RNA composition of maturing sperm. In order to understand the complex roles for the epididymis in reproductive biology, we generated a single cell atlas of gene expression from the murine epididymis and vas deferens. We recovered all the key cell types of the epididymal epithelium, including principal cells, clear cells, and basal cells, along with associated support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. Moreover, our data illuminate extensive regional specialization of principal cell populations across the length of the epididymis, with a substantial fraction of segment-specific genes localized in genomic clusters of functionally-related genes. In addition to the extensive region-specific specialization of principal cells, we find evidence for functionally-specialized subpopulations of stromal cells, and, most notably, two distinct populations of clear cells. Analysis of ligand/receptor expression reveals a network of potential cellular signaling connections, with several predicted interactions between cell types that may play roles in immune cell recruitment and other aspects of epididymal function. Our dataset extends on existing knowledge of epididymal biology, and provides a wealth of information on potential regulatory and signaling factors that bear future investigation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Vera D Rinaldi ◽  
Elisa Donnard ◽  
Kyle Gellatly ◽  
Morten Rasmussen ◽  
Alper Kucukural ◽  
...  

Following testicular spermatogenesis, mammalian sperm continue to mature in a long epithelial tube known as the epididymis, which plays key roles in remodeling sperm protein, lipid, and RNA composition. To understand the roles for the epididymis in reproductive biology, we generated a single-cell atlas of the murine epididymis and vas deferens. We recovered key epithelial cell types including principal cells, clear cells, and basal cells, along with associated support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. Moreover, our data illuminate extensive regional specialization of principal cell populations across the length of the epididymis. In addition to region-specific specialization of principal cells, we find evidence for functionally specialized subpopulations of stromal cells, and, most notably, two distinct populations of clear cells. Our dataset extends on existing knowledge of epididymal biology, and provides a wealth of information on potential regulatory and signaling factors that bear future investigation.


2003 ◽  
Vol 284 (4) ◽  
pp. G547-G550 ◽  
Author(s):  
Marshall H. Montrose

Epithelial cells are gatekeepers that sit at the interface between two compartments. By controlling the flow of molecules and information between two compartments, epithelial cells provide unique benefit to the body. This article provides a brief appraisal of our current knowledge about the functions of gastrointestinal epithelial cells as a functionally diverse set of cells mediating transepithelial transport and as a continually renewing layer of cells. The convergence of new methodologies in laser capture microdissection, microarray analyses, microscopic analyses, and generation of mutant animals provides an exciting template for future research.


Reproduction ◽  
2003 ◽  
pp. 233-240 ◽  
Author(s):  
EJ Peirce ◽  
HD Moore ◽  
CM Leigh ◽  
WG Breed

The cauda epididymidis, with its relatively cool temperature (32-35 degrees C), is considered to be the main site of sperm storage in male mammals. However, in the adult male spinifex hopping mouse, Notomys alexis, similar numbers of spermatozoa are found in the vas deferens to those in the cauda epididymidis. The present study shows that, unlike in the laboratory mouse in which spermatozoa of the vas deferens are found mainly in the epididymal region of the duct, spermatozoa in the hopping mouse are localized mainly to the middle and urethral regions of the vas deferens which lies in the inguinal and lower abdominal region of the body cavity. After ligation of the vas deferens close to its connection with the epididymis, many spermatozoa in the vas deferens retain the potential for motility for up to 2 weeks, indicating that the viability of spermatozoa is not compromised by being restricted to core body temperature. This urethral region of the vas deferens, in which spermatozoa reside, has a highly divergent structural organization compared with that of common laboratory rodents in which there is an expanded lumen with a network of epithelial folds. Ultrastructural observations of the cells lining the duct indicate that there are not any marked differences in morphology compared with the cells lining the duct in common laboratory murids, but the infoldings of the vas deferens of the hopping mouse are highly vascular which might facilitate supply of oxygen and nutrients to the spermatozoa residing in the lumen.


2021 ◽  
Vol 8 (7) ◽  
pp. 117
Author(s):  
Giovanni Cilia ◽  
Laura Zavatta ◽  
Rosa Ranalli ◽  
Antonio Nanetti ◽  
Laura Bortolotti

The deformed wing virus (DWV) is one of the most common honey bee pathogens. The virus may also be detected in other insect species, including Bombus terrestris adults from wild and managed colonies. In this study, individuals of all stages, castes, and sexes were sampled from three commercial colonies exhibiting the presence of deformed workers and analysed for the presence of DWV. Adults (deformed individuals, gynes, workers, males) had their head exscinded from the rest of the body and the two parts were analysed separately by RT-PCR. Juvenile stages (pupae, larvae, and eggs) were analysed undissected. All individuals tested positive for replicative DWV, but deformed adults showed a higher number of copies compared to asymptomatic individuals. Moreover, they showed viral infection in their heads. Sequence analysis indicated that the obtained DWV amplicons belonged to a strain isolated in the United Kingdom. Further studies are needed to characterize the specific DWV target organs in the bumblebees. The result of this study indicates the evidence of DWV infection in B. terrestris specimens that could cause wing deformities, suggesting a relationship between the deformities and the virus localization in the head. Further studies are needed to define if a specific organ could be a target in symptomatic bumblebees.


Parasitology ◽  
1973 ◽  
Vol 67 (3) ◽  
pp. 263-278 ◽  
Author(s):  
R. J. S. Beer

The egg and larval stages of Trichuris suis can be briefly characterized as follows: The egg: barrel shaped, possesses a thick shell consisting of three thick outer layers and an inner thin vitelline membrane, is operculate at each end and is unsegmented and unfertilized when freshly deposited. L. 1 within the egg: presence of an oral spear, a poorly denned oesophagus and an intestinal tract consisting of undifferentiated granulated material. L. 1 within the host: initial differentiation of an oesophagus, cell body, intestine and rectum. L. 2: further differentiation of the body organs and the appearance of the rudiments of the reproductive system. L. 3: initial development of reproductive system and development of a cloaca in the male thus distinguishing the sexes. L. 4: differentiation of reproductive system into vagina, uterus, oviduct and ovary in the female, and testis, vas deferens, ejaculatory duct, spicule and spicular muscle, sheath and tube in the male. L. 5 or adult stage: completed development of the sexual organs including formation of the vulval orifice and eggs in the female and seminal vesicle in the male.


Andrologia ◽  
2003 ◽  
Vol 35 (1) ◽  
pp. 3-3 ◽  
Author(s):  
C. Baldauf ◽  
W. Miska ◽  
W. Weidner ◽  
W.-B. Schill ◽  
R. Henkel

2017 ◽  
Vol 19 (77) ◽  
pp. 208-213
Author(s):  
D. Masiuk ◽  
A. Sosnitskiy ◽  
A. Kokarev ◽  
S. Koliada

There were infected neonatal piglets in the first days of their lives PED virus suspension derived from pigs previously PED patients. Diagnosis for PED in piglets donor virus PED was inserted complex method for clinical and epizootic performance and confirmed the identification PEDV by PCR-RT using the test system «EZ-RED/TGE/PDCoV MPX 1.0 Real time RT-PCR» company Tetracore (USA) Thermocyclers CFX 96 Real-Time System company BIO RAD (USA). Homogenate small intestine of pigs PEDV donor, prepared in a blender for PCR in a thick band of 18 animal carcasses, frozen at -18 °C without cryopreservation and kept 359 days. Before infecting pigs and strip defrost by RT-PCR identified the concentration of the virus genome equivalents (GE) without establishing viable virions quantitative pathogen. For Sample 20 selected analog neonatal piglets, divided them into 3 experimental groups (group 1 – 5 piglets, group 2 – 5 piglets and group 3 – 7 piglets) and one control (3 piglets). Research pigs infected per os virus-containing suspension with a concentration PEDV 1.03×106 GE/cm3. The dose for infection first group was 6 cm3 (6.18×106 GE/cm3), for the second – 5 cm3 (5,15 × 106 GE/cm3), for the third – 4 cm3 (4.12 GE×106/cm3) homogenate. The fourth group – control (not infected). All the pigs were in identical conditions that fully meet the physiological needs of the body. Of the 17 infected pigs only 2 was infected PEDV. PED was confirmed by laboratory methods. In bacteriological examination of internal organs of pigs that came out of a research experiment and control group were diagnosed colibacteriosis. In the control group was isolated from heart and intestinal non-pathogenic for white mice E. coli. From pigs 1 and 2 research groups has been allocated to white mice nonpathogenic E. coli, is set colibacteriosis; 2 experimental group found in one pig hemolytic E. coli; 3 experimental group from the internal organs of pigs in conjunction with non-pathogenic for mice intestinal former cane isolated Klesiella spp., is diagnosed with mixed infection (E. coli, Klesiella spp.). From the intestine of experimental and control pigs do not identified beneficial microflora – aerococcus, lactobacteria, bifidobacteria and cultured putrefactive anaerobic spore facultative and non spore microflora.


2021 ◽  
Vol 5 (3) ◽  
pp. 698-703
Author(s):  
Ramadhan Ananda Putra ◽  
Raveinal ◽  
Fauzar ◽  
Deka Viotra

COVID-19 outbreak is currently being concerned for managing patients withimmunological disorders nowadays, including SLE. Lupus is a complexautoimmune disease characterized by the presence of autoantibodies that againstcell nucleus involved many organs in the body. Patients with SLE will increaserisk of severe infection because the intrinsic respond attack with their immunerespond though immunosuppressive drugs consumption, and will potentiallydamage some organs target associated with their disease. Lupus have multipleclinical manifestations with a fluctuating symptom. Patient who come with thesymptom ofbreathlessness will getworse day by day. The symptom could be felt inthe same time as fatigue, joint pain, hair loss, malar rash, oral ulcer, pleuraleffusion and swollen feet. There's a patient with antinuclear antibody positive foranti-smith and anti-Ro/SS-A. She was diagnosed with COVID-19, SLE withnephritis, haemolytic anemia, vasculitis and pleural effusions. The clinicalmanifestations of this patient indicate a COVID-19 with lupus nephritis that hassevere disease. She was being treated with methylprednisolone andhydroxychloroquine for SLE and azithromycin plus oseltamivir as a therapy forCOVID-19. The effect of hydroxychloroquine on SARS-CoV-2 was better seen inpatients with SLE who gotthe medication regularly. Patients went home after 24days of hospitalization after negative RT-PCR results and clinical improvement ofLES.


Sign in / Sign up

Export Citation Format

Share Document