Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types

1992 ◽  
Vol 262 (2) ◽  
pp. C461-C469 ◽  
Author(s):  
A. G. Howarth ◽  
M. R. Hughes ◽  
B. R. Stevenson

ZO-1 is a high molecular mass phosphoprotein peripherally associated with the cytoplasmic surface of tight junctions in epithelial and endothelial cells. We report here that ZO-1 is also present in several nonepithelial cell types in vitro that are not believed to form tight junctions, including primary cultures of astrocytes, Schwann cells, and dermal fibroblasts and the C6 glioma, S-180 (sarcoma), and P3 myeloma cell lines. Immunoblots of cell extracts probed with a ZO-1-specific monoclonal antibody reveal a single band that comigrates with ZO-1 from rodent epithelial cells at 225 kDa. In addition, these cells contain a single mRNA species of identical size to that previously reported for ZO-1 in epithelial tissues, as determined by Northern blots probed with a partial ZO-1 cDNA. Immunofluorescence microscopy demonstrates diverse ZO-1 distributions in these cells. In astrocytes, identified by the presence of glial fibrillary acidic protein, ZO-1 is localized at discrete sites of cell-cell contact as well as within the cell cytoplasm. In contrast, S-180 cells display diffuse staining at the cell periphery and within the cytoplasm. Dermal fibroblasts show no staining above background, although ZO-1 was detected on immunoblots of fibroblast cell extracts. Immunofluorescence staining of frozen sections of mouse brain demonstrates no detectable ZO-1 immunoreactivity outside blood vessels where endothelial cell tight junctions of the blood-brain barrier are located. These studies suggest that, although ZO-1 is found to be associated with the tight junction, it has a broader distribution than previously recognized.

Author(s):  
Yifan Xia ◽  
Yunfei Li ◽  
Wasem Khalid ◽  
Marom Bikson ◽  
Bingmei M. Fu

Transcranial direct current stimulation (tDCS) is a non-invasive physical therapy to treat many psychiatric disorders and to enhance memory and cognition in healthy individuals. Our recent studies showed that tDCS with the proper dosage and duration can transiently enhance the permeability (P) of the blood-brain barrier (BBB) in rat brain to various sized solutes. Based on the in vivo permeability data, a transport model for the paracellular pathway of the BBB also predicted that tDCS can transiently disrupt the endothelial glycocalyx (EG) and the tight junction between endothelial cells. To confirm these predictions and to investigate the structural mechanisms by which tDCS modulates P of the BBB, we directly quantified the EG and tight junctions of in vitro BBB models after DCS treatment. Human cerebral microvascular endothelial cells (hCMECs) and mouse brain microvascular endothelial cells (bEnd3) were cultured on the Transwell filter with 3 μm pores to generate in vitro BBBs. After confluence, 0.1–1 mA/cm2 DCS was applied for 5 and 10 min. TEER and P to dextran-70k of the in vitro BBB were measured, HS (heparan sulfate) and hyaluronic acid (HA) of EG was immuno-stained and quantified, as well as the tight junction ZO-1. We found disrupted EG and ZO-1 when P to dextran-70k was increased and TEER was decreased by the DCS. To further investigate the cellular signaling mechanism of DCS on the BBB permeability, we pretreated the in vitro BBB with a nitric oxide synthase (NOS) inhibitor, L-NMMA. L-NMMA diminished the effect of DCS on the BBB permeability by protecting the EG and reinforcing tight junctions. These in vitro results conform to the in vivo observations and confirm the model prediction that DCS can disrupt the EG and tight junction of the BBB. Nevertheless, the in vivo effects of DCS are transient which backup its safety in the clinical application. In conclusion, our current study directly elucidates the structural and signaling mechanisms by which DCS modulates the BBB permeability.


1996 ◽  
Vol 134 (4) ◽  
pp. 1003-1018 ◽  
Author(s):  
B H Keon ◽  
S Schäfer ◽  
C Kuhn ◽  
C Grund ◽  
W W Franke

Using a monoclonal antibody we have identified and cDNA-cloned a novel type of protein localized, by light and electron microscopy, to the plaque associated with the cytoplasmic face of the tight junction-containing zone (zonula occludens) of polar epithelial cells and of Sertoli cells of testis, but absent from the junctions of vascular endothelia. The approximately 3.7-kb mRNA encodes a polypeptide of 1142 amino acids (calculated molecular weight 126.5 kD, pI 6.25), for which the name "symplekin" (from Greek sigma upsilon mu pi lambda epsilon kappa epsilon iota, nu, to tie together, to weave, to be intertwined) is proposed. However, both the mRNA and the protein can also be detected in a wide range of cell types that do not form tight junctions or are even completely devoid of any stable cell contacts. Careful analyses have revealed that the protein occurs in all these diverse cells in the nucleoplasm, and only in those cells forming tight junctions is it recruited, partly but specifically, to the plaque structure of the zonula occludens. We discuss symplekin as a representative of a group of dual residence proteins which occur and probably function in the nucleus as well as in the plaques exclusive for either tight junctions, adherens junctions, or desmosomes.


1994 ◽  
Vol 107 (5) ◽  
pp. 1347-1357 ◽  
Author(s):  
H. Wolburg ◽  
J. Neuhaus ◽  
U. Kniesel ◽  
B. Krauss ◽  
E.M. Schmid ◽  
...  

Tight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability. The complexity of tight junctions, defined as the number of branch points per unit length of tight junctional strands, decreased 5 hours after culture but thereafter remained almost constant. In contrast, the association of tight junction particles with the cytoplasmic leaflet of the endothelial membrane bilayer (P-face) decreased continuously with a major drop between 16 hours and 24 hours. The complexity of tight junctions could be increased by elevation of intracellular cAMP levels while phorbol esters had the opposite effect. On the other hand, the P-face association of tight junction particles was enhanced by elevation of cAMP levels and by coculture of endothelial cells with astrocytes or exposure to astrocyte-conditioned medium. The latter effect on P-face association was induced by astrocytes but not fibroblasts. Elevation of cAMP levels together with astrocyte-conditioned medium synergistically increased transendothelial electrical resistance and decreased inulin permeability of primary cultures, thus confirming the effects on tight junction structure and barrier function. P-face association of tight junction particles in brain endothelial cells may therefore be a critical feature of blood-brain barrier function that can be specifically modulated by astrocytes and cAMP levels. Our results suggest an important functional role for the cytoplasmic anchorage of tight junction particles for brain endothelial barrier function in particular and probably paracellular permeability in general.


1991 ◽  
Vol 112 (3) ◽  
pp. 479-490 ◽  
Author(s):  
M G Lampugnani ◽  
M Resnati ◽  
E Dejana ◽  
P C Marchisio

This paper shows that, in confluent human umbilical vein endothelial cell (EC) monolayers, the integrin heterodimers alpha 2 beta 1 and alpha 5 beta 1, but not other members of the beta 1 subfamily, are located at cell-cell contact borders and not at cellular free edges. Also the alpha v chain, but not its most common partner beta 3, that is widely expressed in EC cell-matrix junctions, is found at cell-cell borders. In EC monolayers, the putative ligands of alpha 2 beta 1 and alpha 5 beta 1 receptors, i.e., laminin, collagen type IV, and fibronectin, are also organized in strands corresponding to cell-cell borders. The location of the above integrin receptors is not an artifact of in vitro culture since it has been noted also in explanted islets of the native umbilical vein endothelium. The integrins alpha 2 beta 1 and alpha 5 beta 1 play a role in the maintenance of endothelial monolayer continuity in vitro. Indeed, specific antibodies to alpha 2 beta 1, alpha 5 beta 1, and the synthetic peptide GRGDSP alter its continuity without any initial cell detachment. Moreover, antibodies to alpha 5 beta 1 increase the permeation of macromolecules across confluent EC monolayers. In contrast beta 3 antibodies were ineffective. It is suggested that the relocation of integrins to cell-cell borders is a feature of cells programmed to form polarized monolayers since integrins have a different distribution in nonpolar confluent dermal fibroblasts. The conclusion is that some members of the integrin superfamily collaborate with other intercellular molecules to form lateral junctions and to control both the monolayer integrity and the permeability properties of the vascular endothelial lining. This also suggest that integrins are adhesion molecules provided with a unique biochemical adaptability to different biological functions.


1989 ◽  
Vol 109 (3) ◽  
pp. 1047-1056 ◽  
Author(s):  
J M Anderson ◽  
C M Van Itallie ◽  
M D Peterson ◽  
B R Stevenson ◽  
E A Carew ◽  
...  

We previously identified and characterized ZO-1 as a peripheral membrane protein specifically associated with the cytoplasmic surface of tight junctions. Here we describe the identification of partial cDNA sequences encoding rat and human ZO-1 and their use to study the assembly of tight junctions in the Caco-2 human intestinal epithelial cell line. A rat cDNA was isolated from a lambda-gtll expression library by screening with mAbs. Polyclonal antibodies were raised to cDNA-encoded fusion protein; several properties of these antibodies support this cDNA as encoding ZO-1. Expression of ZO-1 mRNA occurs in the rat and Caco-2 cells with a major transcript of approximately 7.5 kb. To disrupt tight junctions and study the subsequent process of assembly, Caco-2 cells were grown in suspension for 48 h in Ca++/Mg++-free spinner medium during which time they lose cell-cell contacts, become round, and by immunofluorescence microscopy show diffuse and speckled localization of ZO-1. Within hours of replating at confluent density in Ca++/Mg++-containing media, attached cells show discrete localization of ZO-1 at cell-cell contacts. Within 2 d, fully confluent monolayers form, and ZO-1 localizes in a continuous gasket-like fashion circumscribing all cells. ZO-1 mRNA levels are highest in cells in spinner culture, and upon replating rapidly fall and plateau at approximately 10% of initial levels after 2-3 wk in culture. ZO-1 protein levels are lowest in contact-free cells and rise five- to eightfold over the same period. In contrast, mRNA levels for sucrase-isomaltase, an apical membrane hydrolase, increase only after a confluent monolayer forms. Thus, in this model of contact-dependent assembly of the tight junction, there is both a rapid assembly beginning upon cell-cell contact, as well as a long-term modulation involving changes in expression of ZO-1 mRNA and protein levels.


1975 ◽  
Vol 66 (3) ◽  
pp. 657-663 ◽  
Author(s):  
L W Tice ◽  
S H Wollman ◽  
R C Carter

The morphology of the tight junction of rat thyroid epithelium was examined in freeze-fractured material fixed in glutaraldehyde and briefly glycerinated. In normal thyroids the overall appearance of this junctional specialization resembled that of other cell types in many respects. Short-term changes in thyroid activity and hypophysectomy for 3 wk did not obviously affect the appearance of tight junctions. Feeding of the goitrogen, thiouracil, which stimulates secretion of thyroid-stimulating hormone, resulted in the appearance of some very narrow and some very wide, tight junctions or sometimes junctions with both wide and narrow regions within the same cell.


2010 ◽  
Vol 78 (11) ◽  
pp. 4958-4964 ◽  
Author(s):  
Maura C. Strauman ◽  
Jill M. Harper ◽  
Susan M. Harrington ◽  
Erik Juncker Boll ◽  
James P. Nataro

ABSTRACT Enteroaggregative Escherichia coli (EAEC) is responsible for inflammatory diarrhea in diverse populations, but its mechanisms of pathogenesis have not been fully elucidated. We have used a previously characterized polarized intestinal T84 cell model to investigate the effects of infection with EAEC strain 042 on tight junction integrity. We find that infection with strain 042 induces a decrease in transepithelial electrical resistance (TER) compared to uninfected controls and to cells infected with commensal E. coli strain HS. When the infection was limited after 3 h by washing and application of gentamicin, we observed that the TER of EAEC-infected monolayers continued to decline, and they remained low even as long as 48 h after the infection. Cells infected with the afimbrial mutant strain 042aafA exhibited TER measurements similar to those seen in uninfected monolayers, implicating the aggregative adherence fimbriae II (AAF/II) as necessary for barrier dysfunction. Infection with wild-type strain 042 induced aberrant localization of the tight junction proteins claudin-1 and, to a lesser degree, occludin. EAEC-infected T84 cells exhibited irregular shapes, and some cells became elongated and/or enlarged; these effects were not observed after infection with commensal E. coli strain HS or 042aafA. The effects on tight junctions were also observed with AAF/I-producing strain JM221, and an afimbrial mutant was similarly deficient in inducing barrier dysfunction. Our results show that EAEC induces epithelial barrier dysfunction in vitro and implicates the AAF adhesins in this phenotype.


Parasitology ◽  
2005 ◽  
Vol 131 (5) ◽  
pp. 583-590 ◽  
Author(s):  
YING LEI ◽  
M. DAVEY ◽  
J. T. ELLIS

Attachment and invasion ofToxoplasma gondiiandNeospora caninumto a cat and a dog fibroblast cell line and 2 epithelial cell lines (a cat kidney and Vero) were comparedin vitrousing fluorescence antibody methodology. In addition, trypsin treatment of tachyzoites was used to determine whether protein molecules were essential to the process of invasion. The results show that bothT. gondiiandN. caninuminvaded all 4 cell lines, and that pre-treatment ofT. gondiitachyzoites with trypsin caused an increase in the ability of the parasite to invade these host cells. FurthermoreT. gondii, in comparison toN. caninum, invaded all 4 cell lines at greater levels. The results here support the conclusion that bothT. gondiiandN. caninumhave the ability to invade a variety of cell types including both dog and cat cells, and questions the utility of Vero cells as an appropriate host cell forin vitrostudies on the biology of these taxa.


1991 ◽  
Vol 11 (11) ◽  
pp. 5534-5540 ◽  
Author(s):  
E J Murray ◽  
D Stott ◽  
P W Rigby

F9 embryonal carcinoma (EC) stem cells contain an E1a-like activity that is absent from differentiated derivatives. We have previously characterized proteins present in F9 EC cell extracts that bind to the E1a-dependent E2A promoter and have shown that two of them, TF68 and DRTF1, are required for efficient transcription in vitro (N. B. La Thangue, B. Thimmapaya, and P. W. J. Rigby, Nucleic Acids Res. 18:2929-2938, 1990). We now show that the E1a-like activity is detectable in transient transfection assays. Deletion mutations show that a distal sequence element, which includes the ATF/CREB consensus, is required for expression in both cell types, although it does not mediate the down-regulation of promoter activity that accompanies differentiation. A series of point mutations generated by in vitro mutagenesis confirm this and show that sequences around -60 are necessary for efficient expression in stem cells but not in differentiated derivatives. These sequences bind DRTF1, the activity of which is strongly down-regulated during differentiation. Surprisingly, mutations in a previously uncharacterized region of the promoter restore activity to a promoter carrying the -60 mutation and lead to the formation of a new DNA-protein complex.


Sign in / Sign up

Export Citation Format

Share Document