scholarly journals Diet during early life defines testicular lipid content and sperm quality in adulthood

2020 ◽  
Vol 319 (6) ◽  
pp. E1061-E1073
Author(s):  
Luís Crisóstomo ◽  
Romeu A. Videira ◽  
Ivana Jarak ◽  
Kristina Starčević ◽  
Tomislav Mašek ◽  
...  

Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health, but few studies have addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism, leading to permanent damage to sperm parameters. After weaning ( day 21 after birth), 36 male mice were randomly divided into three groups and fed with a different diet regimen for 200 days: a standard chow diet (CTRL), a high-fat diet (HFD) (carbohydrate: 35.7%, protein: 20.5%, and fat: 36.0%), and a high-fat diet for 60 days, then replaced by standard chow (HFDt). Biometric and metabolic data were monitored. Animals were then euthanized, and tissues were collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with a high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an overaccumulation of proinflammatory n-6 polyunsaturated fatty acids in the testis, which is strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates with irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 54-54
Author(s):  
Ying Tang ◽  
Ting-Chun Lin ◽  
Soonkyu Chung ◽  
Young-Cheul Kim ◽  
Zhenhua Liu

Abstract Objectives Emerging evidence indicates a potentially important role for early-life events and exposures in cancer development later in life. Moreover, accumulating evidence suggests that the incidence of cancers has reached a plateau in elders, whereas it continuously rises in young to middle adult. The present study aimed to investigate the potential impacts of high-fat diet in early-life, mimicking childhood/adolescent in humans, on mammary health in later-life of mice, equivalent to the young to middle age in human. Methods Female C57BL/8 mice (4 weeks of age) were fed a low-fat diet (LF: 10% kcal from fat) or a high-fat diet (HF: 60% kcal from fat) for 8 weeks, which is equivalent to child/adolescent age in humans. Mice in early-life groups were sacrificed after 8 weeks feeding, whereas mice in later-life groups were switched to standard chow diet (Lab Diet#5P76) and fed for additional 12 weeks before sacrifice. A panel of metabolic parameters, inflammatory cytokines, as well as gene expression related to tumorigenic Wnt-signaling were assessed by qPCR and immunoblotting analysis. Results Compared with LF group, the body weight in HF group was significantly elevated after 8-wk HF diet feeding (P < 0.05). After switching to the standard chow diet for 12 weeks, the significance remained until 24 weeks of age although with a reduced degree of magnitude (P < 0.05). For the metabolic factors, HFD reduced the expression levels of both Pparγ (P = 0.08) and adiponectin (P < 0.05) at 12 weeks and the reductions remains at 24 weeks (P < 0.01). Meanwhile, expressions of aromatase, estrogen receptor α and Tnf-α, Il-6, Il-10 as well as Cox2 among examined inflammatory mediators (Tnf-α, Il-6, Il-10, Il-2, Il-1β, Ifn-γ, Cox2) were significantly higher in HF than in LF group at 24 weeks (P < 0.05). For Wnt-signaling target genes (Cyclin D1, C-Myc, and Axin 2), a significant increase for C-Myc was observed in HF group at 12 weeks (P < 0.01). Conclusions Our results suggested that HF diet in early-life enhances adiposity and alters mammary metabolic and inflammatory status, creating a microenvironment in favor of breast tumorigenesis in later-life. Funding Sources This project was supported by USDA/Hatch (#1013548).


2018 ◽  
Vol 37 (5) ◽  
pp. 383-392 ◽  
Author(s):  
Ian Huck ◽  
Kevin Beggs ◽  
Udayan Apte

Perfluorooctanesulfonic acid (PFOS) is a persistent organic pollutant with worldwide bioaccumulation due to a very long half-life. Perfluorooctanesulfonic acid exposure results in significant hepatic effects including steatosis, proliferation, hepatomegaly, and in rodents, carcinogenesis. The objective of this study was to determine whether PFOS exposure exacerbates nonalcoholic fatty liver disease and nonalcoholic steatohepatitis pathogenesis. Eight-week-old male C57BL/6 J mice (n = 5 per group) were fed ad libitum normal chow diet (ND) alone, 60% high-fat diet (HFD) alone, ND + PFOS, and HFD + PFOS (0.0001% w/w (1 mg/kg) of PFOS) for 6 weeks. Both HFD alone and the ND + PFOS treatment induced significant adiposity and hepatomegaly, but the HFD + PFOS treatment showed a marked protection. Oil Red O staining and quantitative analysis of hepatic lipid content revealed increased hepatic steatosis in ND + PFOS and in HFD alone fed mice, which was prevented in HFD + PFOS treatment. Further studies revealed that ND + PFOS treatment significantly affected expression of lipid trafficking genes to favor steatosis, but these changes were absent in HFD + PFOS group. Specifically, expression of CD36, the major lipid importer in the cells, and peroxisome proliferator-activated receptor gamma (PPARγ), its major regulator, were induced in HFD + no treatment (NT) and ND + PFOS-fed mice but remained unchanged in HFD + PFOS mice. In conclusion, these data indicate that coadministration of PFOS with HFD mitigates steatosis and hepatomegaly induced by HFD and that by PFOS fed in ND diet via regulation of cellular lipid import machinery. These findings suggest dietary lipid content be considered when performing risk management of PFOS in humans and the elucidation of PFOS-induced hepatotoxicity.


2021 ◽  
Vol 22 (17) ◽  
pp. 9261
Author(s):  
Agata Zuccaro ◽  
Begoña Zapatería ◽  
María Gracia Sánchez-Alonso ◽  
María Haro ◽  
María Limones ◽  
...  

(1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to determine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model. (2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown adipocyte markers mRNA and immunodetection) in Ptn−/− mice either fed with standard-chow diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn−/− mice are protected against the development of HFD-induced insulin resistance, had lower liver lipid content and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in liver. HFD-Ptn−/− mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion increased the expression of specific markers of brown/beige adipocytes and was associated with the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions: Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis, by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Massimo Collino ◽  
Raffaella Mastrocola ◽  
Debora Nigro ◽  
Fausto Chiazza ◽  
Manuela Aragno ◽  
...  

Nutrient overload leads to impaired muscle oxidative capacity and insulin sensitivity. However, comparative analyses of the effects of dietary manipulation on skeletal muscles with different fiber composition are lacking. This study aimed to investigate the selective adaptations in the soleus and tibialis anterior muscles evoked by administration of high-fat diet for 12 weeks in 10 mice (HFD mice) compared to 10 animals fed with a normal chow diet (control mice). Mice fed with the HFD diet exhibited hyperlipidemia, hyperinsulinemia, hyperglycemia, and lower exercise capacity in comparison to control mice. In control mice, soleus fibers showed higher lipid content than tibialis anterior fibers. In contrast, the lipid content was similar between the two muscles in HFD mice. Significant differences in markers of muscle mitochondrial production and/or activity as well as of lipid synthesis were detected between HFD mice and control mice, especially in the tibialis anterior. Moreover, translocation of GLUT-4 transporter to the plasma membrane and activation of the insulin signaling pathway were markedly inhibited in the tibialis and slightly reduced in the soleus of HFD mice compared to control mice. Overall, these results show that adaptive responses to dietary manipulation occur in a muscle-specific pattern.


2019 ◽  
Author(s):  
Luís Crisóstomo ◽  
Luís Rato ◽  
Ivana Jarak ◽  
Branca M. Silva ◽  
João F. Raposo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luís Crisóstomo ◽  
Ivana Jarak ◽  
Luís P. Rato ◽  
João F. Raposo ◽  
Rachel L. Batterham ◽  
...  

AbstractThe consumption of energy-dense diets has contributed to an increase in the prevalence of obesity and its comorbidities worldwide. The adoption of unhealthy feeding habits often occurs at early age, prompting the early onset of metabolic disease with unknown consequences for reproductive function later in life. Recently, evidence has emerged regarding the intergenerational and transgenerational effects of high-fat diets (HFD) on sperm parameters and testicular metabolism. Hereby, we study the impact of high-fat feeding male mice (F0) on the testicular metabolome and function of their sons (F1) and grandsons (F2). Testicular content of metabolites related to insulin resistance, cell membrane remodeling, nutritional support and antioxidative stress (leucine, acetate, glycine, glutamine, inosine) were altered in sons and grandsons of mice fed with HFD, comparing to descendants of chow-fed mice. Sperm counts were lower in the grandsons of mice fed with HFD, even if transient. Sperm quality was correlated to testicular metabolite content in all generations. Principal Component Analysis of sperm parameters and testicular metabolites revealed an HFD-related phenotype, especially in the diet-challenged generation and their grandsons. Ancestral HFD, even if transient, causes transgenerational “inherited metabolic memory” in the testicular tissue, characterized by changes in testicular metabolome and function.


Author(s):  
Dan-Dan Wang ◽  
Fang Wu ◽  
Ling-Yu Zhang ◽  
Ying-Cai Zhao ◽  
Cheng-Cheng Wang ◽  
...  

2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


2021 ◽  
Vol 91 ◽  
pp. 108598
Author(s):  
Diego Hernández-Saavedra ◽  
Laura Moody ◽  
Xinyu Tang ◽  
Zachary J. Goldberg ◽  
Alex P. Wang ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


Sign in / Sign up

Export Citation Format

Share Document