scholarly journals Interaction between dietary fat and exercise on excess postexercise oxygen consumption

2014 ◽  
Vol 306 (9) ◽  
pp. E1093-E1098 ◽  
Author(s):  
Elizabeth A. Frost ◽  
Leanne M. Redman ◽  
Lilian de Jonge ◽  
Jennifer Rood ◽  
Jeffrey J. Zachwieja ◽  
...  

The objective of this study was to determine the effect of increased physical activity on subsequent sleeping energy expenditure (SEE) measured in a whole room calorimeter under differing levels of dietary fat. We hypothesized that increased physical activity would increase SEE. Six healthy young men participated in a randomized, single-blind, crossover study. Subjects repeated an 8-day protocol under four conditions separated by at least 7 days. During each condition, subjects consumed an isoenergetic diet consisting of 37% fat, 15% protein, and 48% carbohydrate for the first 4 days, and for the following 4 days SEE and energy balance were measured in a respiration chamber. The first chamber day served as a baseline measurement, and for the remaining 3 days diet and activity were randomly assigned as high-fat/exercise, high-fat/sedentary, low-fat/exercise, or low-fat/sedentary. Energy balance was not different between conditions. When the dietary fat was increased to 50%, SEE increased by 7.4% during exercise ( P < 0.05) relative to being sedentary (baseline day), but SEE did not increase with exercise when fat was lowered to 20%. SEE did not change when dietary fat was manipulated under sedentary conditions. Physical activity causes an increase in SEE when dietary fat is high (50%) but not when dietary fat is low (20%). Dietary fat content influences the impact of postexercise-induced increases in SEE. This finding may help explain the conflicting data regarding the effect of exercise on energy expenditure.

1997 ◽  
Vol 136 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Susanna Iossa ◽  
Maria Pina Mollica ◽  
Lillà Lionetti ◽  
Antonio Barletta ◽  
Giovanna Liverini

Abstract We have carried out measurements of energy balance in hypothyroid rats fed a low-fat or a high-fat diet for eighteen days. We have also measured cephalic and processing thermic effect of food (TEF) after a low-fat or a high-fat meal. Body lipid gain, carcass lipid content and gross efficiency were significantly (P < 0·05) higher in hypothyroid rats fed a high-fat diet compared with hypothyroid rats fed a low-fat diet, while metabolizable energy intake and energy expenditure remained unchanged. Cephalic TEF after a low-fat meal was significantly (P < 005) lower in hypothyroid rats fed a high-fat diet compared with hypothyroid rats fed a low-fat diet, while it was significantly (P <0·05) higher after a high-fat meal than after a low-fat meal in hypothyroid rats fed a high-fat diet. No significant variation was found in processing TEF after a low-fat or a high-fat meal. Our results indicate that hypothyroid rats are unable to develop increased energy expenditure and increased TEF in response to a high-fat diet. European Journal of Endocrinology 136 309–315


2019 ◽  
Vol 126 (4) ◽  
pp. 984-992 ◽  
Author(s):  
Nathan P. De Jong ◽  
Corey A. Rynders ◽  
David A. Goldstrohm ◽  
Zhaoxing Pan ◽  
Andrew H. Lange ◽  
...  

This study compared 24-h nutrient oxidation responses between a sedentary condition (SED) and a condition in which short 5-min bouts of moderate-intensity physical activity were performed hourly for nine consecutive hours over 4 days (MICRO). To determine whether any shifts in fuel use were due solely to increases in energy expenditure, we also studied a condition consisting of a single isoenergetic 45-min bout of moderate-intensity exercise (ONE). Twenty sedentary overweight or obese adults (10 men/10 women; 32.4 ± 6.3 yr; BMI, 30.6 ± 2.9 kg/m2) completed all three conditions (MICRO, SED, and ONE) in a randomized order. Each condition consisted of a 3-day free-living run-in followed by a 24-h stay in a whole-room calorimeter to measure total energy expenditure (TEE) and substrate utilization. Dietary fat oxidation was also assessed during the chamber stay by administering a [1-13C] oleic acid tracer at breakfast. Energy intake was matched across conditions. Both MICRO and ONE increased TEE relative to SED, resulting in a negative energy balance. HOMA-IR improved in both activity conditions. MICRO increased 24-h carbohydrate oxidation compared with both ONE and SED ( P < 0.01 for both). ONE was associated with higher 24-h total fat oxidation compared with SED, and higher 24-h dietary fat oxidation compared with both SED and MICRO. Differences in substrate oxidation remained significant after adjusting for energy balance. In overweight and obese men and women, breaking up sitting time increased reliance upon carbohydrate as fuel over 24 h, while a single energy-matched continuous bout of exercise preferentially relies upon fat over 24 h. NEW & NOTEWORTHY Insulin sensitivity, as assessed by HOMA-IR, was improved after 4 days of physical activity, independent of frequency and duration of activity bouts. Temporal patterns of activity across the day differentially affect substrate oxidation. Frequent interruptions of sedentary time with short bouts of walking primarily increase 24-h carbohydrate oxidation, whereas an energy-matched single continuous bout of moderate intensity walking primarily increased 24-h fat oxidation.


2001 ◽  
Vol 85 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Susanna Iossa ◽  
Lillà Lionetti ◽  
Maria P. Mollica ◽  
Raffaella Crescenzo ◽  
Antonio Barletta ◽  
...  

Variations in energy balance, body composition, and nutrient partitioning induced by high-fat feeding, cold exposure or by concomitant high-fat feeding and cold exposure were studied in young Wistar rats. Changes in hepatic metabolism as well as in serum free triiodothyronine and leptin levels were also evaluated. Rats were exposed to either 24 or 4°C and fed either a low- or high-fat diet (10 % or 50 % energy respectively) for 2 weeks. Relative to low-fat feeding at 24°C, both energy intake and expenditure were increased by high-fat feeding or by cold exposure, and these changes were accompanied by increased serum triiodothyronine levels. In response to concomitant high-fat feeding and cold exposure, serum triiodothyronine tended to be further elevated, but no further increases in energy intake or energy expenditure were observed. Independently of diet, the increased energy expenditure in cold-exposed rats was not completely balanced by adaptive hyperphagia, with consequential reductions in protein and fat gain, accompanied by marked decreases in serum leptin. Furthermore, unlike high-fat feeding at 24°C, cold exposure enhanced hepatic mitochondrial oxidative capacity both in the low-fat- and high-fat-fed groups. It is concluded that in this strain of young Wistar rats, despite similarly marked stimulation of energy expenditure by high-fat feeding at 24°C, by cold exposure and by concomitant high-fat feeding and cold exposure, an increased hepatic oxidative capacity occurred only in the presence of the cold stimulus.


2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


2019 ◽  
Vol 317 (2) ◽  
pp. E298-E311 ◽  
Author(s):  
Colin S. McCoin ◽  
Alex Von Schulze ◽  
Julie Allen ◽  
Kelly N. Z. Fuller ◽  
Qing Xia ◽  
...  

The impact of sexual dimorphism and mitophagy on hepatic mitochondrial adaptations during the treatment of steatosis with physical activity are largely unknown. Here, we tested if deficiencies in liver-specific peroxisome proliferative activated-receptor-γ coactivator-1α (PGC-1α), a transcriptional coactivator of biogenesis, and BCL-2/ADENOVIRUS EIB 19-kDa interacting protein (BNIP3), a mitophagy regulator, would impact hepatic mitochondrial adaptations (respiratory capacity, H2O2production, mitophagy) to a high-fat diet (HFD) and HFD plus physical activity via voluntary wheel running (VWR) in both sexes. Male and female wild-type (WT), liver-specific PGC-1α heterozygote (LPGC-1α), and BNIP3 null mice were thermoneutral housed (29–31°C) and divided into three groups: sedentary-low-fat diet (LFD), 16 wk of (HFD), or 16 wk of HFD with VWR for the final 8 wk (HFD + VWR) ( n = 5–7/sex/group). HFD did not impair mitochondrial respiratory capacity or coupling in any group; however, HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Males required VWR to elicit mitochondrial adaptations that were inherently present in sedentary females including greater mitochondrial coupling control and reduced H2O2production. Females had overall reduced markers of mitophagy, steatosis, and liver damage. Steatosis and markers of liver injury were present in sedentary male mice on the HFD and were effectively reduced with VWR despite no resolution of steatosis. Overall, reductions in PGC-1α and loss of BNIP3 only modestly impacted mitochondrial adaptations to HFD and HFD + VWR with the biggest effect seen in BNIP3 females. In conclusion, hepatic mitochondrial adaptations to HFD and treatment of HFD-induced steatosis with VWR are more dependent on sex than PGC-1α or BNIP3.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2383 ◽  
Author(s):  
Shaw ◽  
Leung ◽  
Jong ◽  
Coates ◽  
Davis ◽  
...  

There is evidence to indicate that the central biological clock (i.e., our endogenous circadian system) plays a role in physiological processes in the body that impact energy regulation and metabolism. Cross-sectional data suggest that energy consumption later in the day and during the night is associated with weight gain. These findings have led to speculation that when, as well as what, we eat may be important for maintaining energy balance. Emerging literature suggests that prioritising energy intake to earlier during the day may help with body weight maintenance. Evidence from tightly controlled acute experimental studies indicates a disparity in the body’s ability to utilise (expend) energy equally across the day and night. Energy expenditure both at rest (resting metabolic rate) and after eating (thermic effect of food) is typically more efficient earlier during the day. In this review, we discuss the key evidence for a circadian pattern in energy utilisation and balance, which depends on meal timing. Whilst there is limited evidence that simply prioritising energy intake to earlier in the day is an effective strategy for weight loss, we highlight the potential benefits of considering the role of meal timing for improving metabolic health and energy balance. This review demonstrates that to advance our understanding of the contribution of the endogenous circadian system toward energy balance, targeted studies that utilise appropriate methodologies are required that focus on meal timing and frequency.


2001 ◽  
Vol 280 (2) ◽  
pp. R504-R509 ◽  
Author(s):  
L. Lin ◽  
R. Martin ◽  
A. O. Schaffhauser ◽  
D. A. York

Dietary induced obesity in rodents is associated with a resistance to leptin. We have investigated the hypothesis that dietary fat per se alters the feeding response to peripheral leptin in rats that were fed either their habitual high- or low-fat diet or were naively exposed to the alternative diet. Osborne-Mendel rats were adapted to either high- or low-fat diet. Food-deprived rats were given either leptin (0.5 mg/kg body wt ip) or saline, after which they were provided with either their familiar diet or the alternative diet. Food intake of rats adapted and tested with the low-fat diet was reduced 4 h after leptin injection, whereas rats adapted and tested with a high-fat diet did not respond to leptin. Leptin was injected again 1 and 5 days after the high-fat diet-adapted rats were switched to the low-fat diet. Leptin reduced the food intake on both days. In contrast, when low-fat diet-adapted rats were switched to a high-fat diet, the leptin inhibitory response was present on day 1 but not observed on day 5. Peripheral injection of leptin increased serum corticosterone level and decreased hypothalamic neuropeptide Y mRNA expression in rats fed the low-fat but not the high-fat diet for 20 days. The data suggest that dietary fat itself, rather than obesity, may induce leptin resistance within a short time of exposure to a high-fat diet.


Sign in / Sign up

Export Citation Format

Share Document