scholarly journals Limited predictive ability of surrogate indices of insulin sensitivity/resistance in Asian-Indian men

2010 ◽  
Vol 299 (6) ◽  
pp. E1106-E1112 ◽  
Author(s):  
Ranganath Muniyappa ◽  
Brian A. Irving ◽  
Uma S. Unni ◽  
William M. Briggs ◽  
K. Sreekumaran Nair ◽  
...  

Insulin resistance is highly prevalent in Asian Indians and contributes to worldwide public health problems, including diabetes and related disorders. Surrogate measurements of insulin sensitivity/resistance are used frequently to study Asian Indians, but these are not formally validated in this population. In this study, we compared the ability of simple surrogate indices to accurately predict insulin sensitivity as determined by the reference glucose clamp method. In this cross-sectional study of Asian-Indian men ( n = 70), we used a calibration model to assess the ability of simple surrogate indices for insulin sensitivity [quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment (HOMA2-IR), fasting insulin-to-glucose ratio (FIGR), and fasting insulin (FI)] to predict an insulin sensitivity index derived from the reference glucose clamp method (SIClamp). Predictive accuracy was assessed by both root mean squared error (RMSE) of prediction as well as leave-one-out cross-validation-type RMSE of prediction (CVPE). QUICKI, FIGR, and FI, but not HOMA2-IR, had modest linear correlations with SIClamp (QUICKI: r = 0.36; FIGR: r = −0.36; FI: r = −0.27; P < 0.05). No significant differences were noted among CVPE or RMSE from any of the surrogate indices when compared with QUICKI. Surrogate measurements of insulin sensitivity/resistance such as QUICKI, FIGR, and FI are easily obtainable in large clinical studies, but these may only be useful as secondary outcome measurements in assessing insulin sensitivity/resistance in clinical studies of Asian Indians.

2010 ◽  
Vol 163 (4) ◽  
pp. 585-592 ◽  
Author(s):  
Susanna Wiegand ◽  
Dagmar l'Allemand ◽  
Hanna Hübel ◽  
Heiko Krude ◽  
Mareike Bürmann ◽  
...  

ObjectiveTo study whether metformin reduces obesity, homeostasis model assessment for insulin resistance index (HOMA-IR), and the metabolic syndrome (MtS) in obese European adolescents in addition to previous unsuccessful lifestyle intervention.Design and methodsAfter 6 months of multiprofessional lifestyle intervention, 70 out of 86 adolescents without improvement in body mass index (BMI) and HOMA-IR were randomized into either the placebo (n=34) or the metformin group (2×500 mg/day,n=36) in addition to ongoing lifestyle intervention for another 6 months.ResultsAge was 13.8 years, BMI was 33.1 kg/m2, 65% were female, and 89% were Caucasians. During lifestyle intervention alone, BMI and HOMA-IR deteriorated significantly. In the subsequent medication period, HOMA-IR and fasting insulin improved similarly in the placebo and metformin groups (HOMA-IR decreased 73 vs 54% respectively in metformin versus placebo;P=0.048), but BMI remained unchanged. The insulin sensitivity index, however, only improved in the metformin group. High fasting insulin is correlated with a subsequent BMI increase irrespective of the medication. MtS remained unchanged.ConclusionsObese European adolescents' insulin sensitivity improved without weight change during placebo or metformin intervention in addition to lifestyle intervention. Most differences did not reach statistical significance, probably due to improved compliance with lifestyle intervention as a placebo effect. In addition, the metformin dose may be too low.


2019 ◽  
Vol 31 (3) ◽  
pp. 212-218

Both insulin and leptin are major contributors for the body energy balance. Obesity is a state of energy imbalance and is also associated with changes in both insulin sensitivity and leptin sensitivity. The aim of this study was to find out the relationship between insulin sensitivity and body fat composition, and leptin sensitivity in non-obese and obese adults. A total of 86 adults participated: 42 non-obese and 44 over-weight/obese. Body fat (BF) percent was determined by skinfold method. Fasting plasma glucose was analyzed by glucose oxidase-phenol and 4 aminophenazone (GOD-PAP) method using spectro-photometer, fasting serum insulin and leptin concentrations by direct sandwich ELISA method and resting energy expenditure (REE) by indirect calorimetry. Leptin sensitivity index and insulin sensitivity were expressed as REE : Leptin ratio and homeostatic model assessment-insulin resistance (HOMA-IR), respectively. It was found that median value of HOMA-IR was significantly higher [2.93 vs 1.72, p<0.01] and leptin sensitivity was significantly lower [116.76 vs 265.66, p<0.001] in the overweight/obese adults than the non-obese adults, indicating that insulin sensitivity and leptin sensitivity were markedly reduced in overweight/obese adults in compare to non-obese adults. There was a moderate degree of positive relationship between HOMA-IR and BF only in the overweight/obese (ρ=0.509, n=44, p<0.001) and all adults (ρ=0.39, n=86, p<0.001). Similarly, a weak negative relationship between leptin sensitivity index and HOMA-IR was found in the overweight/obese (ρ=-0.328, n=44, p<0.05) and all adults (ρ=-0.35, n=86, p<0.01). It can be concluded that the insulin sensitivity was adiposity dependent, but, it did not depend on leptin sensitivity.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 127 ◽  
Author(s):  
Federica Vinciguerra ◽  
Andrea Tumminia ◽  
Roberto Baratta ◽  
Alfredo Ferro ◽  
Salvatore Alaimo ◽  
...  

Obesity represents a major risk factor for metabolic disorders, but some individuals, “metabolically healthy” (MHO), show less clinical evidence of these complications, in contrast to “metabolically unhealthy” (MUO) individuals. The aim of this cross-sectional study is to assess the prevalence of the MHO phenotype in a cohort of 246 overweight/obese Italian children and adolescents, and to evaluate their characteristics and the role of insulin resistance. Homeostasis model assessment–insulin resistance (HOMA-IR), insulin sensitivity index (ISI), insulinogenic index (IGI) and disposition index (DI) were all calculated from the Oral Glucose Tolerance Test (OGTT). MHO was defined by either: (1) HOMA-IR < 2.5 (MHO-IRes), or (2) absence of the criteria for metabolic syndrome (MHO-MetS). The MHO prevalence, according to MHO-MetS or MHO-IRes criteria, was 37.4% and 15.8%, respectively. ISI was the strongest predictor of the MHO phenotype, independently associated with both MHO-IRes and MHO-MetS. The MHO-MetS group was further subdivided into insulin sensitive or insulin resistant on the basis of HOMA-IR (either < or ≥ 2.5). Insulin sensitive MHO-MetS patients had a better metabolic profile compared to both insulin resistant MHO-MetS and MUO-MetS individuals. These data underscore the relevance of insulin sensitivity to identifying, among young individuals with overweight/obesity, the ones who have a more favorable metabolic phenotype.


Author(s):  
Gregory Biddle ◽  
Charlotte Edwardson ◽  
Joseph Henson ◽  
Melanie Davies ◽  
Kamlesh Khunti ◽  
...  

Standard statistical modelling has shown that the reallocation of sitting time to either standing or stepping may be beneficial for metabolic health. However, this overlooks the inherent dependency of time spent in all behaviours. The aim is to examine the associations between physical behaviours and markers of metabolic health (fasting glucose, fasting insulin, 2-h glucose, 2-h insulin, Homeostasis Model Assessment of Insulin Sensitivity (HOMA-IS), Matsuda Insulin Sensitivity Index (Matsuda-ISI) while quantifying the associations of reallocating time from one physical behaviour to another using compositional analysis. Objectively measured physical behaviour data were analysed (n = 435) using compositional analysis and compositional isotemporal substitutions to estimate the association of reallocating time from one behaviour to another in a population at high risk of type 2 diabetes mellitus (T2DM). Stepping time was associated with all markers of metabolic health relative to all other behaviours. Reallocating 30 min from sleep, sitting, or standing to stepping was associated with 5–6 fold lower 2-h glucose, 15–17 fold lower 2-h insulin, and higher insulin sensitivity (10–11 fold via HOMA-IS, 12–15 fold via Matsuda-ISI). Associations of reallocating time from any behaviour to stepping were maintained for 2-h glucose, 2-h insulin, and Matsuda-ISI after further adjusting for body mass index (BMI). Relocating time from stepping into sleep, sitting, or standing was associated with lower insulin sensitivity. Stepping time may be the most important behavioural composition when promoting improved metabolic health in adults at risk of T2DM.


2001 ◽  
Vol 91 (2) ◽  
pp. 623-631 ◽  
Author(s):  
Barry Braun ◽  
Paul B. Rock ◽  
Stacy Zamudio ◽  
Gene E. Wolfel ◽  
Robert S. Mazzeo ◽  
...  

After short-term exposure to high altitude (HA), men appear to be less sensitive to insulin than at sea level (SL). We hypothesized that the same would be true in women, that reduced insulin sensitivity would be directly related to the rise in plasma epinephrine concentrations at altitude, and that the addition of α-adrenergic blockade would potentiate the reduction. To test the hypotheses, 12 women consumed a high-carbohydrate meal at SL and after 16 h at simulated 4,300-m elevation (HA). Subjects were studied twice at each elevation: once with prazosin (Prz), an α1-adrenergic antagonist, and once with placebo (Pla). Mathematical models were used to assess insulin resistance based on fasting [homeostasis model assessment of insulin resistance (HOMA-IR)] and postprandial [composite model insulin sensitivity index (C-ISI)] glucose and insulin concentrations. Relative to SL-Pla (HOMA-IR: 1.86 ± 0.35), insulin resistance was greater in HA-Pla (3.00 ± 0.45; P < 0.05), SL-Prz (3.46 ± 0.51; P < 0.01), and HA-Prz (2.82 ± 0.43; P < 0.05). Insulin sensitivity was reduced in HA-Pla (C-ISI: 4.41 ± 1.03; P < 0.01), SL-Prz (5.73 ± 1.01; P < 0.05), and HA-Prz (4.18 ± 0.99; P < 0.01) relative to SL-Pla (8.02 ± 0.92). Plasma epinephrine was significantly elevated in HA-Pla (0.57 ± 0.08 ng/ml; P < 0.01), SL-Prz (0.42 ± 0.07; P < 0.05), and HA-Prz (0.82 ± 0.07; P < 0.01) relative to SL-Pla (0.28 ± 0.04), but correlations with HOMA-IR, HOMA-β-cell function, and C-ISI were weak. In women, short-term exposure to simulated HA reduced insulin sensitivity compared with SL. The change does not appear to be directly mediated by a concurrent rise in plasma epinephrine concentrations.


Author(s):  
Malgorzata Malczewska-Malec ◽  
Iwona Wybranska ◽  
Iwona Leszczynska-Golabek ◽  
Lukasz Partyka ◽  
Jadwiga Hartwich ◽  
...  

AbstractThis study analyzes the relationship between risk factors related to overweight/obesity, insulin resistance, lipid tolerance, hypertension, endothelial function and genetic polymorphisms associated with: i) appetite regulation (leptin, melanocortin-3-receptor (MCR-3), dopamine receptor 2 (D2R)); ii) adipocyte differentiation and insulin sensitivity (peroxisome proliferator-activated receptor-γThe 122 members of 40 obese Caucasian families from southern Poland participated in the study. The genotypes were analyzed by restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) or by direct sequencing. Phenotypes related to obesity (body mass index (BMI), fat/lean body mass composition, waist-to-hip ratio (WHR)), fasting lipids, glucose, leptin and insulin, as well as insulin during oral glucose tolerance test (OGTT) (4 points within 2 hours) and during oral lipid tolerance test (OLTT) (5 points within 8 hours) were assessed. The insulin sensitivity indexes: homeostasis model assessment of insulin resistance, whole body insulin sensitivity index, hepatic insulin sensitivity and early secretory response to an oral glucose load (HOMA-IR, ISI-COMP, ISI-HOMA and DELTA) were calculated.The single gene mutations such as CWe conclude that the polymorphisms we investigated were weakly correlated with obesity but significantly modified the risk factors of the metabolic syndrome.


2013 ◽  
Vol 304 (4) ◽  
pp. R313-R320 ◽  
Author(s):  
Fatima L. C. Sardinha ◽  
Flavia S. Fernandes ◽  
Maria G. Tavares do Carmo ◽  
Emilio Herrera

Prenatal and early postnatal nutritional status may predispose offspring to impaired glucose tolerance and changes in insulin sensitivity in adult life. The long-term consequences of changes in maternal dietary fatty acid composition were determined in rats. From day 1 until day 12 of pregnancy, rats were given isocaloric diets containing 9% nonvitamin fat based on soybean, olive, fish (FO), linseed, or palm oil. Thereafter, they were maintained on the standard diet; offspring were studied at different ages. Body weight at 4, 8, and 12 mo and lumbar adipose tissue and liver weights at 12 mo did not differ between females on the different diets, whereas in males the corresponding values were all lower in the offspring from the FO group compared with the other dietary groups. Plasma glucose concentrations (both basal and after an oral glucose load) did not change with sex or dietary group, but plasma insulin concentrations were lower in females than in males and, in males, were lowest in the FO group. Similar relations were found with both the homeostasis model assessment of insulin resistance and insulin sensitivity index. In conclusion, the intake of more n–3 fatty acids (FO diet) during early pregnancy reduced both fat accretion and age-related decline in insulin sensitivity in male offspring but not in females. It is proposed that the lower adiposity caused by the increased n–3 fatty acids during the intrauterine life was responsible of the lower insulin resistance in male offspring.


2002 ◽  
pp. 49-57 ◽  
Author(s):  
B Ekman ◽  
T Lindstrom ◽  
F Nystrom ◽  
AG Olsson ◽  
G Toss ◽  
...  

OBJECTIVE: To evaluate a dose titration model for recombinant human GH substitution in adult patients with GH deficiency, aiming at normal plasma levels of IGF-I. DESIGN AND METHODS: Eighteen patients participated and a start dose of 0.17 mg GH/day was used except by two men who started with 0.33 mg/day. To demonstrate a clear GH effect the patients were first titrated, with steps of 0.17 mg GH/day every 6-8 weeks, to IGF-I levels in the upper range of age-adjusted reference values. The GH dose was then reduced 1 dose step and kept for a further 6 months. For comparison we investigated 17 healthy control subjects. RESULTS: Plasma IGF-I was increased after 2 weeks on the start dose and did not increase further for up to 8 weeks. Women had significantly lower GH sensitivity than men measured as net increment of IGF-I on the start dose of GH. GH sensitivity was not changed by age. The plasma IGF-I levels increased from 76.3+/-47.0 (s.d.) to 237+/-97 microg/l at the end of the study (P<0.001), and similar IGF-I levels were obtained in both sexes. The maintenance median GH dose was 0.33 mg/day in males and 0.83 mg/day in females (P=0.017). The GH dose correlated negatively with age in both sexes. Body weight, very low density triglycerides, lipoprotein(a) (Lp(a)), and fasting insulin increased, whereas insulin sensitivity index (QUICKI) decreased significantly. In comparison with the controls, the patients had lower fasting blood glucose, fasting insulin and Lp(a) levels at baseline, but these differences disappeared after GH substitution. The two groups had equal insulin sensitivity (QUICKI), but 2 h oral glucose tolerance test values of blood glucose and insulin were significantly higher in the patients at the end of the study. CONCLUSIONS: In conclusion our data suggest that the starting dose of GH substitution and the dose titration steps should be individualised according to GH sensitivity (gender) and the IGF-I level aimed for (age). The reduced insulin sensitivity induced by GH substitution could be viewed as a normalisation if compared with control subjects.


2014 ◽  
Vol 112 (3) ◽  
pp. 457-466 ◽  
Author(s):  
Lei Bao ◽  
Xiaxia Cai ◽  
Meihong Xu ◽  
Yong Li

The present meta-analysis of randomised controlled trials (RCT) aimed to investigate the effect of oat intake on glycaemic control and insulin sensitivity. A literature search was carried out in PubMed, ScienceDirect Online and The Cochrane Library (up to October 2013) for RCT that assessed the effect of oat intake on glucose control and insulin sensitivity. A total of fifteen articles with 673 subjects met the inclusion criteria. A random-effects model was used when the overall pooled studies exhibited significant heterogeneity. Otherwise, a fixed-effects model was used. Compared with controls, oat intake significantly reduced the concentrations of fasting insulin by − 6·29 (95 % CI − 12·32, − 0·27) pmol/l (P= 0·04) and the values of glucose AUC (GAUC; 0–120 min) by − 30·23 (95 % CI − 43·65, − 16·81) min × mmol/l (P< 0·0001). There was a slight decrease in fasting glucose concentrations, glycated Hb concentrations and homeostatic model assessment-insulin resistance values in subjects who consumed oats, but the difference was not significant. In conclusion, oat intake significantly lowers fasting insulin concentrations and GAUC values. To further investigate the effect of oat intake on fasting glucose concentrations, additional long-term and high-quality RCT with a parallel design are required.


Sign in / Sign up

Export Citation Format

Share Document