Sex-related differences in energy balance in response to caloric restriction

2005 ◽  
Vol 289 (1) ◽  
pp. E15-E22 ◽  
Author(s):  
A. Valle ◽  
A. Català-Niell ◽  
B. Colom ◽  
F. J. García-Palmer ◽  
J. Oliver ◽  
...  

Sex-related differences in energy balance were studied in young Wistar rats fed standard chow pellets either ad libitum or in restricted amounts (60% of ad libitum intake) for 100 days. Caloric intake, indirect calorimetry, organ and adipose tissue weights, energy efficiency, liver mitochondrial respiration rate, and brown adipose tissue (BAT) uncoupling protein-1 (UCP1) content were measured. Ad libitum-fed females showed greater oxygen consumption (V̇o2) and carbon dioxide production (V̇co2) and lower energy efficiency than males. Caloric restriction induced a chronic drop of V̇o2 and V̇co2 in females but not in males over the period studied. Restricted females showed a better conservation of metabolic active organ mass and a greater decrease in adipose depots than restricted males. Moreover, changes of BAT size and UCP1 content suggest that BAT may be the main cause responsible for sex differences in the response of energy balance to caloric restriction. In conclusion, our results indicate that females under caloric restriction conditions deactivate facultative thermogenesis to a greater degree than males. This ability may have obvious advantages for female survival and therefore the survival of the species when food is limiting.

1997 ◽  
Vol 273 (1) ◽  
pp. R161-R167 ◽  
Author(s):  
P. J. Hope ◽  
D. Pyle ◽  
C. B. Daniels ◽  
I. Chapman ◽  
M. Horowitz ◽  
...  

The presence of brown adipose tissue (BAT) in marsupials is controversial because attempts to identify mitochondrial uncoupling protein (UCP) have been unsuccessful. Sminthopsis crassicaudata is a small nocturnal marsupial with an interscapular pad of adipose tissue. Electron microscopy revealed this tissue to have characteristics typical of BAT. GDP binding and UCP detection by immunoblot confirmed BAT. Expression of UCP was increased by cold exposure. When animals were placed from 28 to 15 degrees C, body temperature (Tb) decreased by 1.7 degrees C within 30 min and a further 1.0 degree C by 90 min (P < 0.001) before stabilizing at these lower levels. When animals were returned to 28 degrees C, Tb increased within 30 min (P < 0.001) and returned to basal by 120 min. When animals were maintained at 15 degrees C with ad libitum food for 12 days, Tb (P < 0.05), tail width (P < 0.04), and O2 consumption (P < 0.01) all decreased. The respiratory quotient increased (P < 0.001), indicating a change from fat to carbohydrate utilization. Food intake was unchanged, and body weight increased on day 1 (P < 0.01) before returning to baseline on day 3, remaining stable thereafter. These data suggest that although BAT is present in the marsupial S. crassicaudata, it may not be necessary for thermogenesis, at least in the short term. S. crassicaudata utilizes a plasticity in Tb and a change in substrate utilization to maintain energy balance and body composition without the need for an increase in metabolic rate or food consumption and without the need for torpor.


Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2724-2734 ◽  
Author(s):  
Derek A. Dionne ◽  
Søs Skovsø ◽  
Nicole M. Templeman ◽  
Susanne M. Clee ◽  
James D. Johnson

Antiadiposity effects of caloric restriction (CR) are associated with reduced insulin/IGF-1 signaling, but it is unclear whether the effects of CR would be additive to genetically reducing circulating insulin. To address this question, we examined female Ins1+/−:Ins2−/− mice and Ins1+/+:Ins2−/− littermate controls on either an ad libitum or 60% CR diet. Although Igf1 levels declined as expected, CR was unable to reduce plasma insulin levels in either genotype below their ad libitum-fed littermate controls. In fact, 53-week-old Ins1+/−:Ins2−/− mice exhibited a paradoxical increase in circulating insulin in the CR group compared with the ad libitum-fed Ins1+/−:Ins2−/− mice. Regardless of insulin gene dosage, CR mice had lower fasting glucose and improved glucose tolerance. Although body mass and lean mass predictably fell after CR initiation, we observed a significant and unexpected increase in fat mass in the CR Ins1+/−:Ins2−/− mice. Specifically, inguinal fat was significantly increased by CR at 66 weeks and 106 weeks. By 106 weeks, brown adipose tissue mass was also significantly increased by CR in both Ins1+/−:Ins2−/− and Ins1+/+:Ins2−/− mice. Interestingly, we observed a clear whitening of brown adipose tissue in the CR groups. Mice in the CR group had altered daily energy expenditure and respiratory exchange ratio circadian rhythms in both genotypes. Multiplexed analysis of circulating hormones revealed that CR was associated with increased fasting and fed levels of the obesogenic hormone, glucose-dependent insulinotropic polypeptide. Collectively these data demonstrate CR has paradoxical effects on adipose tissue growth in the context of genetically reduced insulin.


2021 ◽  
Vol 3 (2) ◽  
pp. 10-13
Author(s):  
Connor A. Hernon ◽  
Abduallah Elsayed ◽  
Raphael M. Vicente ◽  
Ariane Zamarioli ◽  
Melissa A. Kacena ◽  
...  

This mini-review summarizes the available information regarding the impact of caloric restriction (CR) and/or intermittent fasting (IF) on bone health. CR and IF are dietary interventions used in rehabilitative healthcare for augmenting weight loss and also proposed for recovery of conditions such as stroke and heart failure. CR restricts the total number of calories rather than different food groups or periods of eating. In contrast, IF severely restricts caloric intake for a period of time followed by a period of ad libitum intake. Here, we discuss the available information regarding the impact of these rehabilitation diets on bone metabolism, highlighting areas of consistency and discrepancy and suggesting future areas of study to advance the understanding of CR and/or IF on bone health.


2011 ◽  
Vol 300 (1) ◽  
pp. R1-R8 ◽  
Author(s):  
Tobias Fromme ◽  
Martin Klingenspor

Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.


2011 ◽  
Vol 210 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Lourdes M Andino ◽  
Daniel J Ryder ◽  
Alexandra Shapiro ◽  
Michael K Matheny ◽  
Yi Zhang ◽  
...  

The activation of proopiomelanocortin (POMC) neurons in different regions of the brain, including the arcuate nucleus of the hypothalamus (ARC) and the nucleus of the solitary tract curtails feeding and attenuates body weight. In this study, we compared the effects of delivery of a recombinant adeno-associated viral (rAAV) construct encoding POMC to the ARC with delivery to the ventral tegmental area (VTA). F344×Brown Norway rats were high-fat (HF) fed for 14 days after which self-complementary rAAV constructs expressing either green fluorescent protein or the POMC gene were injected using coordinates targeting either the VTA or the ARC. Corresponding increased POMC levels were found at the predicted injection sites and subsequent α-melanocyte-stimulating hormone levels were observed. Food intake and body weight were measured for 4 months. Although caloric intake was unaltered by POMC overexpression, weight gain was tempered with POMC overexpression in either the VTA or the ARC compared with controls. There were parallel decreases in adipose tissue reserves. In addition, levels of oxygen consumption and brown adipose tissue uncoupling protein 1 were significantly elevated with POMC treatment in the VTA. Interestingly, tyrosine hydroxylase levels were increased in both the ARC and VTA with POMC overexpression in either the ARC or the VTA. In conclusion, these data indicate a role for POMC overexpression within the VTA reward center to combat HF-induced obesity.


2016 ◽  
Vol 66 (2) ◽  
pp. 201-217 ◽  
Author(s):  
Wen-rong Gao ◽  
Wan-long Zhu ◽  
Fang-yan Ye ◽  
Mu-lin Zuo ◽  
Zheng-kun Wang

Physiological adjustments are important strategies for small mammals in response to variation in food availability. To determine the physiological mechanisms affected by food restriction and refeeding, tree shrews were restricted to 85% of initial food intake for 4 weeks and refedad libitumfor another 4 weeks. Changes in food intake, body mass, thermogenesis, body composition, mitochondrial cytochromecoxidase activity, uncoupling protein-1 content in brown adipose tissue and serum leptin levels were measured. The results showed that body mass, body fat mass and serum leptin levels significantly decreased in food restricted tree shrews, and increased when the restriction ended, showing a short “compensatory growth” rather than over-weight or obesity compared withad libitumcontrols. Resting metabolic rate, non-shivering thermogenesis, brown adipose tissue mass (mg), and uncoupling protein-1 content decreased significantly in response to food restriction, and returned to the control levels after the animals were refedad libitum, while the brown adipose tissue mass (%) and cytochromecoxidase activity remained stable during food restriction and refeeding. Food intake increased shortly after refeeding, which perhaps contributed to the rapid regaining of body mass. These results suggest thatTupaia belangerican adjust the status of its physiology integratively to cope with the lack of food by means of decreasing body mass, thermogenesis and serum leptin levels. Leptin may act as a starvation signal to predominantly mediate the reduction in body mass and energy expenditure.


2012 ◽  
Vol 71 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Michael E. Symonds ◽  
Mark Pope ◽  
Helen Budge

Since the rediscovery of brown adipose tissue (BAT) in adult human subjects in 2007, there has been a dramatic resurgence in research interest in its role in heat production and energy balance. This has coincided with a reassessment of the origins of BAT and the suggestion that brown preadipocytes could share a common lineage with skeletal myoblasts. In precocial newborns, such as sheep, the onset of non-shivering thermogenesis through activation of the BAT-specific uncoupling protein 1 (UCP1) is essential for effective adaptation to the cold exposure of the extra-uterine environment. This is mediated by a combination of endocrine adaptations which accompany normal parturition at birth and further endocrine stimulation from the mother's milk. Three distinct adipose depots have been identified in all species studied to date. These contain either primarily white, primarily brown or a mix of brown and white adipocytes. The latter tissue type is present, at least, in the fetus and, thereafter, appears to take on the characteristics of white adipose tissue during postnatal development. It is becoming apparent that a range of organ-specific mechanisms can promote UCP1 expression. They include the liver, heart and skeletal muscle, and involve unique endocrine systems that are stimulated by cold exposure and/or exercise. These multiple pathways that promote BAT function vary with age and between species that may determine the potential to be manipulated in early life. Such interventions could modify, or reverse, the normal ontogenic pathway by which BAT disappears after birth, thereby facilitating BAT thermogenesis through the life cycle.


2021 ◽  
Vol 22 (6) ◽  
pp. 2827
Author(s):  
Vicente Barrios ◽  
Laura M. Frago ◽  
Sandra Canelles ◽  
Santiago Guerra-Cantera ◽  
Eduardo Arilla-Ferreiro ◽  
...  

The growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is involved in metabolic control. Malnutrition reduces IGF-I and modifies the thermogenic capacity of brown adipose tissue (BAT). Leptin has effects on the GH/IGF-I axis and the function of BAT, but its interaction with IGF-I and the mechanisms involved in the regulation of thermogenesis remains unknown. We studied the GH/IGF-I axis and activation of IGF-I-related signaling and metabolism related to BAT thermogenesis in chronic central leptin infused (L), pair-fed (PF), and control rats. Hypothalamic somatostatin mRNA levels were increased in PF and decreased in L, while pituitary GH mRNA was reduced in PF. Serum GH and IGF-I concentrations were decreased only in PF. In BAT, the association between suppressor of cytokine signaling 3 and the IGF-I receptor was reduced, and phosphorylation of the IGF-I receptor increased in the L group. Phosphorylation of Akt and cyclic AMP response element binding protein and glucose transporter 4 mRNA levels were increased in L and mRNA levels of uncoupling protein-1 (UCP-1) and enzymes involved in lipid anabolism reduced in PF. These results suggest that modifications in UCP-1 in BAT and changes in the GH/IGF-I axis induced by negative energy balance are dependent upon leptin levels.


2004 ◽  
Vol 51 (3) ◽  
pp. 805-814 ◽  
Author(s):  
Ewa Stelmanska ◽  
Justyna Korczynska ◽  
Julian Swierczynski

Restricting food intake to a level below that consumed voluntarily (85%, 70% and 50% of the ad libitum energy intake for 3 or 30 days) and re-feeding ad libitum for 48 h results in an increase of malic enzyme (ME) gene expression in rat white adipose tissue. The increase of ME gene expression was much more pronounced in rats maintained on restricted diet for 30 days than for 3 days. The changes in ME gene expression resembled the changes in the content of SREBP-1 in white adipose tissue. A similar increase of serum insulin concentration was observed in all groups at different degrees of caloric restriction and refed ad libitum for 48 h. Caloric restriction and refeeding caused on increase of ME activity also in brown adipose tissue (BAT) and liver. However, in liver a significant increase of ME activity was found only in rats maintained on the restricted diet for 30 days. No significant changes after caloric restriction and refeeding were found in heart, skeletal muscle, kidney cortex, and brain. These data indicate that the increase of ME gene expression after caloric restriction/refeeding occurs only in lipogenic tissues. Thus, one can conclude that caloric restriction/refeeding increases the enzymatic capacity for fatty acid biosynthesis.


Biology ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Magdalena Blaszkiewicz ◽  
Jake W. Willows ◽  
Cory P. Johnson ◽  
Kristy L. Townsend

Brown and white adipose tissues are essential for maintenance of proper energy balance and metabolic health. In order to function efficiently, these tissues require both endocrine and neural communication with the brain. Brown adipose tissue (BAT), as well as the inducible brown adipocytes that appear in white adipose tissue (WAT) after simulation, are thermogenic and energy expending. This uncoupling protein 1 (UCP1)-mediated process requires input from sympathetic nerves releasing norepinephrine. In addition to sympathetic noradrenergic signaling, adipose tissue contains sensory nerves that may be important for relaying fuel status to the brain. Chemical and surgical denervation studies of both WAT and BAT have clearly demonstrated the role of peripheral nerves in browning, thermogenesis, lipolysis, and adipogenesis. However, much is still unknown about which subtypes of nerves are present in BAT versus WAT, what nerve products are released from adipose nerves and how they act to mediate metabolic homeostasis, as well as which cell types in adipose are receiving synaptic input. Recent advances in whole-depot imaging and quantification of adipose nerve fibers, as well as other new research findings, have reinvigorated this field of research. This review summarizes the history of research into adipose innervation and brain–adipose communication, and also covers landmark and recent research on this topic to outline what we currently know and do not know about adipose tissue nerve supply and communication with the brain.


Sign in / Sign up

Export Citation Format

Share Document