CXCL1/CXCL8 (GROα/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro

2014 ◽  
Vol 306 (9) ◽  
pp. E1077-E1084 ◽  
Author(s):  
Tatsushi Omatsu ◽  
Gediminas Cepinskas ◽  
Cheril Clarson ◽  
Eric K. Patterson ◽  
Ibrahim M. Alharfi ◽  
...  

Diabetic ketoacidosis (DKA) in children is associated with intracranial vascular complications, possibly due to leukocyte-endothelial interactions. Our aim was to determine whether DKA-induced inflammation promoted leukocyte adhesion to activated human cerebrovascular endothelium. Plasma was obtained from children with type 1 diabetes either in acute DKA or in an insulin-controlled state (CON). Plasma concentrations of 21 inflammatory analytes were compared between groups. DKA was associated with altered circulating levels of ↑CXCL1 (GROα), ↑CXCL8 (IL-8), ↑IL-6, ↑IFNα2, and ↓CXCL10 (IP-10) compared with CON. These plasma analyte measurements were then used to create physiologically relevant cytokine mixtures (CM). Human cerebral microvascular endothelial cells (hCMEC/D3) were stimulated with either plasma (DKA-P or CON-P) or CM (DKA-CM or CON-CM) and assessed for polymorphonuclear leukocyte (PMN) adhesion. Stimulation of hCMEC/D3 with DKA-P or DKA-CM increased PMN adhesion to hCMEC/D3 under “flow” conditions. PMN adhesion to hCMEC/D3 was suppressed with neutralizing antibodies to CXCL1/CXCL8 or their hCMEC/D3 receptors CXCR1/CXCR2. DKA-P, but not DKA-CM, initiated oxidative stress in hCMEC/D3. Expression of ICAM-1, VCAM-1, and E-selectin were unaltered on hCMEC/D3 by either DKA-P or DKA-CM. In summary, DKA elicits inflammation in children associated with changes in circulating cytokines/chemokines. Increased CXCL1/CXCL8 instigated PMN adhesion to hCMEC/D3, possibly contributing to DKA-associated intracranial vascular complications.

2020 ◽  
Vol 22 (1) ◽  
pp. 176
Author(s):  
Toshiaki Iba ◽  
Jerrold H. Levy ◽  
Koichiro Aihara ◽  
Katsuhiko Kadota ◽  
Hiroshi Tanaka ◽  
...  

(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Rachel L. Washburn ◽  
Karl Mueller ◽  
Gurvinder Kaur ◽  
Tanir Moreno ◽  
Naima Moustaid-Moussa ◽  
...  

Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.


Author(s):  
О.В. Першина ◽  
А.В. Пахомова ◽  
Н.Н. Ермакова ◽  
О.Ю. Рыбалкина ◽  
В.А. Крупин ◽  
...  

Цель исследования состояла в выявлении информативных клеточных маркеров сосудистых осложнений, регенерации микрососудистой сети и воспаления в венозной крови здоровых волонтеров, больных с метаболическим синдромом, сахарным диабетом 1 и 2 типа. Методы. Обследованы больные с метаболическим синдромом (МС), диабетом 2 типа без осложнений, диабетом 1 типа средней степени тяжести и здоровые волонтеры. Диагноз пациентов подтвержден общеклиническими, биохимическими, коагулометрическими и иммуноферментными методами исследования, для оценки экспрессии антигенов использовался многопараметрический цитометрический анализ. Результаты. При анализе экспрессии маркеров показано изменение числа эндотелиальных клеток, мезенхимальных стволовых клеток (МСК) и гемопоэтических стволовых клеток (ГСК) в крови в зависимости от патологии. Эндотелиальные клетки миелоидного (CD45CD14CD34CD309CD144CD31) и немиелоидного (CD45CD14CD34CD309CD144CD31) происхождения, CD309-эндотелиальные клетки и МСК (CD44CD73CD90CD105) предлагаются в качестве маркеров повреждения эндотелия при диабетической симптоматике. При этом ГСК (CD45CD34) могут выступать ценным диагностическим и прогностическим маркером воспаления. Заключение. Для подтверждения сосудистых повреждений и прогноза развития осложнений при диабете 1 и 2 типа в венозной крови пациентов целесообразно оценивать эндотелиальные прогениторные клетки (ЭПК) не костномозговой локализации (CD31CD309CD144) и костномозговой локализации (CD34CD309), и ЭПК c высоким регенеративным потенциалом (CD45CD34CD31CD144). Циркулирующие ЭПК, формирующие колонии in vitro (CD45CD34CD31), рекомендуется использовать в качестве дифференциального маркера состояния регенерации эндотелия при диабете 2 типа. The aim of this study was to identify mesenchymal stem cells (MSC), hematopoietic stem cells (HSC), mature endothelial cells, and endothelial progenitor cells (EPC) in the blood of healthy volunteers, patients with metabolic syndrome, and type 1 and 2 diabetes mellitus as new, informative cellular markers of vascular complications, endothelial regeneration, and inflammation. Methods. The diagnosis was confirmed by general clinical, biochemical, coagulometeric and ELISA studies; multi-parameter cytometric assay was used for evaluation of antigen expression. Results. Changes in the count of MSC, HSC, mature endothelial cells, and endothelial progenitor cells in blood of patients with metabolic syndrome and type 1 and 2 diabetes depended on the type of pathology. We propose using endothelial cells of myeloid (CD45CD14CD34CD309CD144CD31) and non-myeloid origin (CD45CD14CD34CD309CD144CD31), CD309-endothelial cells, and MSCs with the CD44CD73CD90CD105 phenotype as nonspecific markers of endothelial damage in presence of diabetic symptoms. Furthermore, HSCs (CD45CD34) can be used as a valuable diagnostic and prognostic marker of inflammation. Conclusions. It is relevant to evaluate EPCs of non-bone marrow localization (CD31CD309CD144) and bone marrow localization (CD34CD309) and EPCs with a high regenerative potential (CD45CD34CD31CD144) in the blood of patients with type 1 and 2 diabetes to confirm the presence of vascular damage and predict development of complications. Circulating, in vitro colony-forming EPCs (CD45CD34CD31) are recommended as a differential marker for inhibition of endothelial regeneration in type 2 diabetes.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Elvira Ponce ◽  
Jay Moskovitz ◽  
Gregory Grabowski

Abstract Gaucher disease type 1, a non-neuronopathic lysosomal storage disease, is caused by mutations at the acid β-glucosidase locus. Periodic infusions of macrophage-targeted acid β-glucosidase reverse hepatosplenomegaly, hematologic, and bony findings in many patients. Two patients receiving enzyme therapy developed neutralizing antibodies to acid β-glucosidase that were associated with a lack of improvement or progressive disease. After initial improvement, case 1 had no additional response to 2 years of high-dose (50 U/kg every 2 weeks) enzyme therapy. Similarly, case 2 initially showed a favorable response to enzyme therapy that plateaued after 1 year of treatment. Both patients developed minor allergic reactions and antibodies to acid β-glucosidase within the first 6 months of treatment. Enzyme therapy was discontinued in case 1, with resultant disease progression and need for splenectomy. An immunosuppression/tolerization protocol was initiated in case 2 because of disease progression and stable neutralizing antibody titers. The IgG neutralizing antibodies rapidly and completely inactivated the wild-type, but not the N370S, acid β-glucosidase in vitro. Antibodies to human serum albumin and chorionic gonadotropin also developed. The finding of neutralizing antibodies to acid β-glucosidase during enzyme therapy for Gaucher disease has significant implications for monitoring the therapeutic responses and for potential alternative future therapies for Gaucher disease.


2009 ◽  
Vol 83 (17) ◽  
pp. 9002-9007 ◽  
Author(s):  
Nicholas M. Provine ◽  
Wendy Blay Puryear ◽  
Xueling Wu ◽  
Julie Overbaugh ◽  
Nancy L. Haigwood

ABSTRACT Two frequently employed methods for generating well-characterized, genetically defined infectious human immunodeficiency virus type 1 in vitro include the use of infectious molecular clones (IMCs) and pseudoviruses (PVs) competent for single-round infection. We compared six matched pairs of IMCs and PVs. The relative amounts of Env incorporated and efficiency of cleavage differed substantially between the two systems. Altering the ratio of proviral genome and env expression plasmids can produce pseudovirions that are structurally more similar to the matched IMCs. Differences in Env incorporation and cleavage translated into moderate differences in assays infectivity and sensitivity to neutralizing antibodies and entry inhibitors.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Elvira Ponce ◽  
Jay Moskovitz ◽  
Gregory Grabowski

Gaucher disease type 1, a non-neuronopathic lysosomal storage disease, is caused by mutations at the acid β-glucosidase locus. Periodic infusions of macrophage-targeted acid β-glucosidase reverse hepatosplenomegaly, hematologic, and bony findings in many patients. Two patients receiving enzyme therapy developed neutralizing antibodies to acid β-glucosidase that were associated with a lack of improvement or progressive disease. After initial improvement, case 1 had no additional response to 2 years of high-dose (50 U/kg every 2 weeks) enzyme therapy. Similarly, case 2 initially showed a favorable response to enzyme therapy that plateaued after 1 year of treatment. Both patients developed minor allergic reactions and antibodies to acid β-glucosidase within the first 6 months of treatment. Enzyme therapy was discontinued in case 1, with resultant disease progression and need for splenectomy. An immunosuppression/tolerization protocol was initiated in case 2 because of disease progression and stable neutralizing antibody titers. The IgG neutralizing antibodies rapidly and completely inactivated the wild-type, but not the N370S, acid β-glucosidase in vitro. Antibodies to human serum albumin and chorionic gonadotropin also developed. The finding of neutralizing antibodies to acid β-glucosidase during enzyme therapy for Gaucher disease has significant implications for monitoring the therapeutic responses and for potential alternative future therapies for Gaucher disease.


2009 ◽  
Vol 83 (7) ◽  
pp. 2989-2995 ◽  
Author(s):  
Neelanjana Ray ◽  
Leslie A. Blackburn ◽  
Robert W. Doms

ABSTRACT Enfuvirtide (ENF) prevents the entry of human immunodeficiency virus type 1 (HIV-1) into cells by binding to the HR-1 region of the viral envelope (Env) protein gp41 subunit. Resistance to ENF arises via mutations in the drug binding site in HR-1. In addition, HR-2 mutations are commonly observed in ENF-resistant Env proteins, though their role remains unclear. We explored the mechanistic basis for clinical resistance to ENF and the role of HR-2 mutations. Using panels of ENF resistance-associated mutants for two patients, we found that mutations in HR-1 slowed the fusion kinetics and that mutations in HR-2 restored fusion rates. We assessed the differences in the rates of fusion of these mutants from a temperature-arrested state and observed similar trends, suggesting that the step of delay occurs after coreceptor engagement. Sensitivity to neutralizing antibodies was unchanged by the HR-1 and HR-2 mutants in each panel. Since this result was in contrast to those of a previous in vitro analysis where enhanced sensitivity to neutralization was demonstrated for heterologous Envs with ENF resistance-associated HR-1 changes, we examined the context dependence of HR-1 and HR-2 mutations by transferring the mutations seen in one patient into the Env context of another. These studies revealed that some, but not all, HR-1 mutations, when placed out of context (i.e., in a patient Env where they did not originally arise), enhance sensitivity to neutralizing antibodies. However, in most cases, HR-1 mutations in ENF-treated patients evolve in a manner that preserves pretreatment neutralization sensitivity so as to evade the pressures of the immune system.


2001 ◽  
Vol 280 (3) ◽  
pp. E405-E412 ◽  
Author(s):  
Mary Ann Mitnick ◽  
Andrew Grey ◽  
Urszula Masiukiewicz ◽  
Marcjanna Bartkiewicz ◽  
Laura Rios-Velez ◽  
...  

Interleukin-6 (IL-6) is an important mediator of parathyroid hormone (PTH)-induced bone resorption. Serum levels of IL-6 and its soluble receptor (IL-6sR) are regulated in part by PTH. The PTH/PTH-related protein type 1 receptor is highly expressed in the liver, and in the current study we investigated whether the liver produces IL-6 or IL-6sR in response to PTH. Perfusion of the isolated rat liver with PTH-(1-84) stimulated rapid, dose-dependent production of bioactive IL-6 and the IL-6sR. These effects were observed at near physiological concentrations of the hormone such that 1 pM PTH induced hepatic IL-6 production at a rate of ∼0.6 ng/min. In vitro, hepatocytes, hepatic endothelial cells, and Kupffer cells, but not hepatic stellate cells, were each found to produce both IL-6 and IL-6sR in response to higher (10 nM) concentrations of PTH. Our data suggest that hepatic-derived IL-6 and IL-6sR contribute to the increase in circulating levels of these cytokines induced by PTH in vivo and raise the possibility that PTH-induced, liver-derived IL-6 may exert endocrine effects on tissues such as bone.


1999 ◽  
Vol 80 (12) ◽  
pp. 3137-3144 ◽  
Author(s):  
Serge Harpin ◽  
David J. Hurley ◽  
Majambu Mbikay ◽  
Brian Talbot ◽  
Youssef Elazhary

Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle that is ubiquitously distributed worldwide. In this study, cattle were immunized by intramuscular injections with plasmid DNA expressing the BVDV type 1 major glycoprotein E2. Animals either received injections of naked DNA (N-DNA) or DNA in cationic liposomes (L-DNA). Both DNA preparations induced virus-specific neutralizing antibodies in vaccinates, although the response was much lower in N-DNA-immunized animals. N-DNA-vaccinated animals also showed virus-specific lymphocyte proliferation responses to type 1, live BVDV in vitro, whereas L-DNA vaccination induced no such responses. After 16 weeks, DNA-vaccinated and mock-vaccinated animals were challenged with a USDA-certified BVDV type 1 strain. Four significant observations were made: (1) N-DNA-vaccinated calves showed limited protection from virus challenge, (2) L-DNA-vaccinated animals did not show any signs of protection, (3) the challenge induced strong memory responses in the production of serum neutralizing antibodies to both genotypes (type 1 and 2 of BVDV), and (4) the challenge induced a mucosal memory response in nasal secretions of both L- and N-DNA-vaccinated animals.


2000 ◽  
Vol 74 (13) ◽  
pp. 5802-5809 ◽  
Author(s):  
K. Grovit-Ferbas ◽  
J. F. Hsu ◽  
J. Ferbas ◽  
V. Gudeman ◽  
I. S. Y. Chen

ABSTRACT Inactivation of viral particles is the basis for several vaccines currently in use. Initial attempts to use simian immunodeficiency virus to model a killed human immunodeficiency virus type 1 (HIV-1) vaccine were unsuccessful, and limited subsequent effort has been directed toward a systematic study of the requirements for a protective killed HIV-1 vaccine. Recent insights into HIV-1 virion and glycoprotein structure and neutralization epitopes led us to revisit whether inactivated HIV-1 particles could serve as the basis for an HIV-1 vaccine. Our results indicate that relatively simple processes involving thermal and chemical inactivation can inactivate HIV-1 by at least 7 logs. For some HIV-1 strains, significant amounts of envelope glycoproteins are retained in high-molecular-weight fractions. Importantly, we demonstrate retention of each of three conformation-dependent neutralization epitopes. Moreover, reactivity of monoclonal antibodies directed toward these epitopes is increased following treatment, suggesting greater exposure of the epitopes. In contrast, treatment of free envelope under the same conditions leads only to decreased antibody recognition. These inactivated virions can also be presented by human dendritic cells to direct a cell-mediated immune response in vitro. These data indicate that a systematic study of HIV-1 inactivation, gp120 retention, and epitope reactivity with conformation-specific neutralizing antibodies can provide important insights for the development of an effective killed HIV-1 vaccine.


Sign in / Sign up

Export Citation Format

Share Document