Growth hormone directly stimulates gluconeogenesis in canine renal proximal tubule

1989 ◽  
Vol 257 (5) ◽  
pp. E751-E756
Author(s):  
S. A. Rogers ◽  
I. E. Karl ◽  
M. R. Hammerman

To characterize the action of growth hormone (GH) on gluconeogenesis in renal proximal tubule, glucose production was measured in suspensions of canine renal proximal tubular segments incubated with 1 mM L-alanine, 10 mM lactate, 1 mM succinate, and various concentrations (10(-11) to 10(-6) M) of recombinant bovine GH (bGH). Production of glucose increased as a function of time for 120 min. Bovine growth hormone (10(-6) M) increased glucose production at 120 min by 55 +/- 16%. Significant enhancement of glucose production occurred in suspensions of segments incubated with as little as 10(-10) M bGH. Half-maximal stimulation occurred at between 10(-9) and 10(-8) M. To ascertain whether these actions of bGH are mediated directly, we determined the effects of insulin-like growth factors (IGFs) I and II on glucose production. Addition of IGF-I to segments enhanced glucose production in a concentration-dependent manner. However, incubation with bGH did not induce measurable IGF-I production in the segments. In contrast to the action of IGF-I, IGF-II did not affect glucose production. We conclude that bGH acts directly on cells within proximal tubular segments to enhance gluconeogenesis. Stimulation of gluconeogenesis in vitro could reflect a counterregulatory action of GH exerted on renal proximal tubule in vivo.

1987 ◽  
Vol 253 (6) ◽  
pp. F1171-F1177 ◽  
Author(s):  
M. C. Chobanian ◽  
M. R. Hammerman

To characterize the effect of insulin on ammoniagenesis in renal proximal tubule, ammonia productions were measured in suspensions of canine renal proximal tubular segments incubated with 10 mM L-glutamine and varying concentrations of insulin. Productions of ammonia were linear functions of time for 120 min. Insulin (10(-6) M) increased ammonia production at 2 h by 34 +/- 5%. At the same time, gluconeogenesis, as measured by glucose production, was decreased by 16 +/- 2%. Significant enhancement of ammoniagenesis occurred in suspensions of segments incubated with as little as 10(-9) M insulin. Half-maximal stimulation occurred at between 10(-9) and 10(-8) M insulin. Oxidation of L-glutamine in cells within segments was also increased by insulin in a concentration-dependent manner. Insulin increased ammonia productions in segments incubated at pH 7.5 but not at 7.0. Under the former conditions, insulin enhanced ammoniagenesis in proximal tubular segments under conditions such that extracellular [Na+] was greater than intracellular [Na+], but not when extracellular [Na+] equaled intracellular [Na+]. We conclude that insulin stimulates ammonia production in suspensions of canine renal proximal tubular segments. Stimulation of ammonia production in vitro could reflect an action of insulin to enhance proximal tubular ammoniagenesis in vivo.


1989 ◽  
Vol 257 (4) ◽  
pp. F503-F514 ◽  
Author(s):  
M. R. Hammerman

Growth hormone (GH) exerts a variety of metabolic and anabolic effects on skeletal and soft tissues including kidney. Some of these actions are mediated directly, whereas others result from GH-dependent synthesis and release of polypeptide growth factors designated insulin-like growth factors (IGFs). Receptors for GH are present in proximal tubule and GH directly stimulates gluconeogenesis at this site. IGF receptors are found in glomerulus and proximal tubule. Mechanisms for signal transduction by GH and IGFs have been characterized using proximal tubular basolateral membranes. IGFs regulate metabolic and transport processes in cultured glomerular mesangial cells and in isolated proximal tubular cells. IGF I is synthesized in cultured mesangial cells and is produced in a GH-dependent manner in cortical and medullary collecting duct. Evidence has accumulated that IGF I of renal origin functions as a paracrine growth factor in the settings of GH-induced hypertrophy and compensatory hypertrophy of the kidney, and in the setting of proximal tubular regeneration following ischemic injury. IGFs are embryonal mitogens and IGF II may act as a transforming agent for Wilms' tumor. Further characterization of the GH-IGF axis in kidney will provide additional insights into the roles of these peptides as regulators of renal function, growth, and development.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2019 ◽  
Vol 316 (2) ◽  
pp. E333-E344 ◽  
Author(s):  
Morten Lyng Høgild ◽  
Ann Mosegaard Bak ◽  
Steen Bønløkke Pedersen ◽  
Jørgen Rungby ◽  
Jan Frystyk ◽  
...  

Growth hormone (GH) levels are blunted in obesity, but it is not known whether this relates to altered GH sensitivity and whether this influences the metabolic adaptation to fasting. Therefore, we investigated the effect of obesity on GH signal transduction and fasting-induced changes in GH action. Nine obese (BMI 35.7 kg/m2) and nine lean (BMI 21.5 kg/m2) men were studied in a randomized crossover design with 1) an intravenous GH bolus, 2) an intravenous saline bolus, and 3) 72 h of fasting. Insulin sensitivity (hyperinsulinemic, euglycemic clamp) and substrate metabolism (glucose tracer and indirect calorimetry) were measured in studies 1 and 2. In vivo GH signaling was assessed in muscle and fat biopsies. GH pharmacokinetics did not differ between obese and lean subjects, but endogenous GH levels were reduced in obesity. GH signaling (STAT5b phosphorylation and CISH mRNA transcription), and GH action (induction of lipolysis and peripheral insulin resistance) were similar in the two groups, but a GH-induced insulin antagonistic effect on endogenous glucose production only occurred in the obese. Fasting-induced IGF-I reduction was completely abrogated in obese subjects despite a comparable relative increase in GH levels (ΔIGF-I: lean, −66 ± 10 vs. obese, 27 ± 16 µg/l; P < 0.01; ΔGH: lean, 647 ± 280 vs. obese, 544 ± 220%; P = 0.76]. We conclude that 1) GH signaling is normal in obesity, 2) in the obese state, the preservation of IGF-I with fasting and the augmented GH-induced central insulin resistance indicate increased hepatic GH sensitivity, 3) blunted GH levels in obesity may protect against insulin resistance without compromising IGF-I status.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


2020 ◽  
Vol 48 (02) ◽  
pp. 341-356
Author(s):  
Chiu-Mei Lin ◽  
Wei-Jen Fang ◽  
Bao-Wei Wang ◽  
Chun-Ming Pan ◽  
Su-Kiat Chua ◽  
...  

MicroRNA 145 (miR-145) is a critical modulator of cardiovascular diseases. The downregulation of myocardial miR-145 is followed by an increase in disabled-2 (Dab2) expression in cardiomyocytes. (-)-epigallocatechin gallate (EGCG) is a flavonoid that has been evaluated extensively due to its diverse pharmacological properties including anti-inflammatory effects. The aim of this study was to investigate the cardioprotective effects of EGCG under hypoxia-induced stress in vitro and in vivo. The hypoxic insult led to the suppression of miR-145 expression in cultured rat cardiomyocytes in a concentration-dependent manner. Western blotting and real-time PCR were performed. In rat myocardial infarction study, in situ hybridization, and immunofluorescent analyses were adopted. The western blot and real-time PCR data revealed that hypoxic stress with 2.5% O2 suppressed the expression of miR-145 and Wnt3a/[Formula: see text]-catenin in cultured rat cardiomyocytes but augmented Dab2. Treatment with EGCG attenuated Dab2 expression, but increased Wnt3a and [Formula: see text]-catenin in hypoxic cultured cardiomyocytes. Following in vivo myocardial infarction (MI) study, the data revealed the myocardial infarct area reduced by 48.5%, 44.6%, and 48.5% in EGCG (50[Formula: see text]mg/kg) or miR-145 dominant or Dab2 siRNA groups after myocardial infarction for 28 days, respectively. This study demonstrated that EGCG increased miR-145, Wnt3a, and [Formula: see text]-catenin expression but attenuated Dab2 expression. Moreover, EGCG ameliorated myocardial ischemia in vivo. The novel suppressive effect was mediated through the miR-145 and Dab2/Wnt3a/[Formula: see text]-catenin pathways.


2000 ◽  
Vol 278 (4) ◽  
pp. R956-R963 ◽  
Author(s):  
Jean-Michel Weber ◽  
Deena S. Shanghavi

The rate of hepatic glucose production (Ra glucose) of rainbow trout ( Oncorhynchus mykiss) was measured in vivo by continuous infusion of [6-3H]glucose and in vitro on isolated hepatocytes to examine the role of epinephrine (Epi) in its regulation. By elevating Epi concentration and/or blocking β-adrenoreceptors with propranolol (Prop), our goals were to investigate the mechanism for Epi-induced hyperglycemia to determine the possible role played by basal Epi concentration in maintaining resting Ra glucose and to assess indirect effects of Epi in the intact animal. In vivo infusion of Epi caused hyperglycemia (3.75 ± 0.16 to 8.75 ± 0.54 mM) and a twofold increase in Ra glucose (6.57 ± 0.79 to 13.30 ± 1.78 μmol ⋅ kg− 1 ⋅ min− 1, n = 7), whereas Prop infusion decreased Ra from 7.65 ± 0.92 to 4.10 ± 0.56 μmol ⋅ kg− 1 ⋅ min− 1( n = 10). Isolated hepatocytes increased glucose production when treated with Epi, and this response was abolished in the presence of Prop. We conclude that Epi-induced trout hyperglycemia is entirely caused by an increase in Ra glucose, because the decrease in the rate of glucose disappearance normally seen in mammals does not occur in trout. Basal circulating levels of Epi are involved in maintaining resting Ra glucose. Epi stimulates in vitro glucose production in a dose-dependent manner, and its effects are mainly mediated by β-adrenoreceptors. Isolated trout hepatocytes produce glucose at one-half the basal rate measured in vivo, even when diet, temperature, and body size are standardized, and basal circulating Epi is responsible for part of this discrepancy. The relative increase in Ra glucose after Epi stimulation is similar in vivo and in vitro, suggesting that indirect in vivo effects of Epi, such as changes in hepatic blood flow or in other circulating hormones, do not play an important role in the regulation of glucose production in trout.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 397
Author(s):  
Yoo-Kyung Song ◽  
Jin-Ha Yoon ◽  
Jong Kyu Woo ◽  
Ju-Hee Kang ◽  
Kyeong-Ryoon Lee ◽  
...  

The potential inhibitory effect of quercetin, a major plant flavonol, on breast cancer resistance protein (BCRP) activity was investigated in this study. The presence of quercetin significantly increased the cellular accumulation and associated cytotoxicity of the BCRP substrate mitoxantrone in human cervical cancer cells (HeLa cells) in a concentration-dependent manner. The transcellular efflux of prazosin, a stereotypical BCRP substrate, was also significantly reduced in the presence of quercetin in a bidirectional transport assay using human BCRP-overexpressing cells; further kinetic analysis revealed IC50 and Ki values of 4.22 and 3.91 μM, respectively. Moreover, pretreatment with 10 mg/kg quercetin in rats led to a 1.8-fold and 1.5-fold increase in the AUC8h (i.e., 44.5 ± 11.8 min∙μg/mL vs. 25.7 ± 9.98 min∙μg/mL, p < 0.05) and Cmax (i.e., 179 ± 23.0 ng/mL vs. 122 ± 23.2 ng/mL, p < 0.05) of orally administered sulfasalazine, respectively. Collectively, these results provide evidence that quercetin acts as an in vivo as well as in vitro inhibitor of BCRP. Considering the high dietary intake of quercetin as well as its consumption as a dietary supplement, issuing a caution regarding its food–drug interactions should be considered.


1994 ◽  
Vol 14 (8) ◽  
pp. 5360-5370 ◽  
Author(s):  
M E Kraus ◽  
J T Lis

B52 is a Drosophila melanogaster protein that plays a role in general and alternative splicing in vitro. It is homologous to the human splicing factor ASF/SF2 which is essential for an early step(s) in spliceosome assembly in vitro and also regulates 5' and 3' alternative splice site choice in a concentration-dependent manner. In vitro, B52 can function as both a general splicing factor and a regulator of 5' alternative splice site choice. Its activity in vivo, however, is largely uncharacterized. In this study, we have further characterized B52 in vivo. Using Western blot (immunoblot) analysis and whole-mount immunofluorescence, we demonstrate that B52 is widely expressed throughout development, although some developmental stages and tissues appear to have higher B52 levels than others do. In particular, B52 accumulates in ovaries, where it is packaged into the developing egg and is localized to nuclei by the late blastoderm stage of embryonic development. We also overexpressed this protein in transgenic flies in a variety of developmental and tissue-specific patterns to examine the effects of altering the concentration of this splicing factor in vivo. We show that, in many cell types, changing the concentration of B52 adversely affects the development of the organism. We discuss the significance of these observations with regard to previous in vitro results.


Sign in / Sign up

Export Citation Format

Share Document