NOS2 deficiency increases intestinal metabolism both in nonstimulated and endotoxemic mice

2004 ◽  
Vol 286 (5) ◽  
pp. G747-G751 ◽  
Author(s):  
Yvonne L. J. Vissers ◽  
Marcella M. Hallemeesch ◽  
Peter B. Soeters ◽  
Wouter H. Lamers ◽  
Nicolaas E. P. Deutz

Animal studies have suggested that nitric oxide (NO) synthases (NOS) play a role in the regulation of protein metabolism in endotoxemia. We therefore investigated the role of inducible NOS (NOS2) on intestinal protein and neuronal NOS (NOS1) and endothelial NOS (NOS3) on amino acid metabolism. Three groups of mice were studied: 1) wild-type (WT), 2) NOS2 knockout (NOS2-KO), and 3) NOS2-KO + Nω-nitro-l-arginine methyl ester (NOS2-KO + l-NAME), both in nonstimulated and LPS-treated conditions. By infusion of the stable isotopes l-[phenyl-2H5]Phe, l-[phenyl-2H2]Tyr, l-[guanidino-15N2]Arg, and l-[ureido-13C; 2H2]citrulline (Cit), intestinal protein, amino acid, and Arg/NO metabolism were studied on the whole body level and across intestine. In nonstimulated situations, NOS2 deficiency increased whole body protein turnover and intestinal Gln uptake and Cit production. In NOS2-KO + l-NAME, the above-mentioned changes were reversed. After LPS in WT, whole body NO and Cit production increased. In contrast to this, LPS decreased net intestinal Gln uptake, whole body NO, and Cit production in NOS2-KO mice. Treatment of NOS2-KO + l-NAME with LPS was lethal in eight of eleven mice (73%). The surviving mice in this group showed a major drop in intestinal protein breakdown and synthesis to almost zero. Thus both in baseline conditions and during endotoxemia, the absence of NOS2 upregulated NOS1 and/or NOS3, which increased intestinal metabolism. The drop in intestinal protein metabolism in the endotoxemic NOS2-KO + l-NAME group might play a role in mortality in that group.

Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1992 ◽  
Vol 263 (4) ◽  
pp. E696-E702 ◽  
Author(s):  
E. A. Liechty ◽  
D. W. Boyle ◽  
H. Moorehead ◽  
Y. M. Liu ◽  
S. C. Denne

The primary effect of insulin on whole body protein metabolism in postnatal life is to reduce proteolysis. To assess the role of insulin in the regulation of protein metabolism in prenatal life, leucine kinetics were determined in the ovine fetus at baseline and in response to hyperinsulinemia. These measurements were made in each fetus in two different maternal states: ad libitum maternal feeding and after a 5-day maternal fast. Maternal fasting resulted in significant increases in baseline fetal leucine rate of appearance (Ra; 51.9 +/- 16.7 vs. 37.3 +/- 3.6 mumol/min, P < 0.05) and leucine oxidation (30.1 +/- 8.9 vs. 8.8 +/- 2.2 mumol/min, P < 0.05). Hyperinsulinemia, which was associated with significant increases in fetal glucose utilization, did not affect total fetal leucine R(a) or leucine release from fetal proteolysis in either maternal state. Under well-fed maternal conditions, hyperinsulinemia produced no changes in the fetal oxidative or nonoxidative disposal of leucine. In contrast, during maternal fasting, hyperinsulinemia reduced fetal leucine oxidation (11.0 +/- 3.7 vs. 31.1 +/- 8.9 mumol/min, P < 0.05) and increased the nonoxidative disposal of leucine (35.4 +/- 4.0 vs. 19.0 +/- 6.1 mumol/min, P < 0.05). This resulted in a change in the fetal leucine accretion rate from negative to positive (-20.9 +/- 7.5 vs. 7.5 +/- 6.7 mumol/min, P < 0.05). These results suggest that, under conditions of restricted maternal substrate intake, fetal hyperinsulinemia and the attendant increase in fetal glucose utilization are associated with increased protein synthesis rather than decreased protein breakdown, thereby improving fetal leucine carcass accretion.


1997 ◽  
Vol 77 (6) ◽  
pp. 885-896 ◽  
Author(s):  
Isabelle Papet ◽  
Piotr Ostaszewski ◽  
Francoise Glomot ◽  
Christiane Obled ◽  
Magali Faure ◽  
...  

AbstractThe effect of a high dose of 3-hydroxy-3-methylbutyrate (HMB, a leucine catabolite) on protein metabolism was investigated in growing male lambs fed on hay and concentrate. Concentrate was supplemented with either Ca(HMB)2 (4g/kg) or Ca(C03)2 in experimental (HMB) and control groups respectively. Both groups consisted of six 2-month old lambs. Three complementary methods to study protein metabolism were carried out consecutively 2·5 months after beginning the dietary treatment: whole body phenylalanine fluxes, postprandial plasma free amino acid time course and fractional rates of protein synthesis in skeletal muscles. Feeding a high dose of HMB led to a significant increase in some plasma free amino acids compared with controls. Total, oxidative and non-oxidative phenylalanine fluxes were not modified by dietary HMB supplementation. Similarly, an acute infusion of HMB, in the control group, did not change these fluxes. In skeletal muscles, fractional rates of protein synthesis were not affected by long-term dietary supplementation with HMB. Taken together our results showed that administration of a high dose of HMB to lambs was able to modify plasma free amino acid pattern without any effect on whole-body protein turnover and skeletal muscle protein synthesis


2006 ◽  
Vol 290 (4) ◽  
pp. E685-E693 ◽  
Author(s):  
Magali Prod’homme ◽  
Cécile Rochon ◽  
Michèle Balage ◽  
Henri Laurichesse ◽  
Igor Tauveron ◽  
...  

The present study was carried out to assess the effects of protease inhibitor (PI) therapy on basal whole body protein metabolism and its response to acute amino acid-glucose infusion in 14 human immunodeficiency virus (HIV)-infected patients. Patients treated with PIs (PI+, 7 patients) or without PIs (PI−, 7 patients) were studied after an overnight fast during a 180-min basal period followed by a 140-min period of amino acid-glucose infusion. Protein metabolism was investigated by a primed constant infusion of l-[1-13C]leucine. Dual-energy X-ray absorptiometry for determination of fat-free mass (FFM) and body fat mass measured body composition. In the postabsorptive state, whole body leucine balance was 2.5 times ( P < 0.05) less negative in the PI+ than in the PI− group. In HIV-infected patients treated with PIs, the oxidative leucine disposal during an acute amino acid-glucose infusion was lower (0.58 ± 0.09 vs. 0.81 ± 0.07 μmol·kg FFM−1·min−1 using plasma [13C]leucine enrichment, P = 0.06; or 0.70 ± 0.10 vs. 0.99 ± 0.08 μmol·kg FFM−1·min−1 using plasma [13C]ketoisocaproic acid enrichment, P = 0.04 in PI+ and PI− groups, respectively) than in patients treated without PIs. Consequently, whole body nonoxidative leucine disposal (an index of protein synthesis) and leucine balance (0.50 ± 0.10 vs. 0.18 ± 0.06 μmol·kg FFM·−1·min−1 in PI+ and PI− groups respectively, P < 0.05) were significantly improved during amino acid-glucose infusion in patients treated with PIs. However, whereas the response of whole body protein anabolism to an amino acid-glucose infusion was increased in HIV-infected patients treated with PIs, any improvement in lean body mass was detected.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 13-13
Author(s):  
Jaap van Milgen ◽  
Nathalie Le Floc’h

Abstract Histidine is a constituent amino acid of body proteins and, once incorporated in protein, histidine can be methylated post-translationally to methyl-histidine. Histidine is also a precursor of histamine, a neurotransmitter and involved in the immune response. Histidine and histamine are constituents of a number of dipeptides, which act as pH buffers, metal chelating agents, and anti-oxidants, especially in skeletal muscles and in the brain. A considerable fraction of whole-body histidine is present as carnosine, the dipeptide of histidine and β-alanine. In the longissimus muscle, about 40% of the total histidine content is present as carnosine. The histidine in carnosine can be methylated to anserine or balenine, and the pig is among the few species that synthesize both forms. Hydrolysis of body protein and of histidine-containing dipeptides results in the release of the constituent amino acids. However, only the histidine of protein and carnosine can be reused for protein synthesis. Methyl-histidine is either excreted in the urine or remains bound in the dipeptides and accumulates in the body. Because carnosine represents such a large histidine reservoir, a dietary histidine deficiency may not directly lead to a reduction in growth, especially if growth is given a higher priority for histidine utilization than maintaining or depleting the histidine-containing dipeptide reserves. Few histidine dose-response studies have been done in piglets and differences in the estimated requirements may be due to differences in diluting or depleting the dipeptide reserves. However, at low histidine intakes, both feed intake and growth are reduced and a reduction of the histidine-to-lysine supply by 1 percentage point results in a growth reduction of 4%. Histidine dose-response studies need to consider the role of histidine as a constituent amino acid of body protein as well as its role in dipeptides.


1996 ◽  
Vol 63 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Brian J. Bequette ◽  
John A. Metcalf ◽  
Diane Wray-Cahen ◽  
F. R. Colette Backwell ◽  
John D. Sutton ◽  
...  

SummaryMammary gland protein metabolism, determined by an arteriovenous difference technique, was monitored in four Holstein-Friesian dairy cows in response to supplemental dietary protein (provided as rumen-protected soyabean meal) during late lactation (weeks 24–30). Each cow was offered two isoenergetic diets composed of grass silage (170 g crude protein/kg dry matter) plus either a low (108 g/kg) or medium (151 g/kg) crude protein concentrate in a single crossover design involving two 21 d periods. On day 21, arteriovenous measurements across the mammary gland were made during a 13 h continuous i.v. infusion of [1-13C]leucine and with frequent (2 hourly) milk sampling during the final 6 h. Although total milk yield was slightly increased (+1 kg/d) by protein supplementation, milk protein yield was not significantly affected. Whole body protein flux (protein synthesis plus oxidation) was not significantly affected by supplementation. Total mammary gland protein synthesis (milk plus non-milk protein) was also not affected by supplementation but on both diets gland synthesis was always greater (by 20–59%) than milk protein output. The fractional oxidation rate of leucine by the mammary gland was significantly increased by protein supplementation (0·047 v. 0·136). Although the enrichment of leucine in secreted milk protein continued to increase, the final value (at 13 h) was 0·94 of the arterial plasma free leucine plateau value (not significantly different), suggesting almost exclusive use of plasma free leucine for milk protein synthesis. Based on current feeding schemes for dairy cattle, a fixed proportion (0·65–0·75) of the additional protein intake (+490 g/d) should have been partitioned into milk protein. Instead, leucine oxidation by the mammary gland was increased. Whether oxidation of other amino acids was also enhanced is unknown but if amino acid oxidation and the ‘additional’ non-milk protein synthesis occurring in the gland are not crucial to milk synthesis, then by reducing such activities improvements in the efficiency of converting absorbed amino acid into milk protein can be achieved.


2000 ◽  
Vol 279 (5) ◽  
pp. E978-E988 ◽  
Author(s):  
Paul G. Whittaker ◽  
Choy H. Lee ◽  
Roy Taylor

The effects of pregnancy and type 1 diabetes [insulin-dependent diabetes mellitus (IDDM)] on protein metabolism are still uncertain. Therefore, six normal and five IDDM women were studied during and after pregnancy, using [13C]leucine and [2H5]phenylalanine with a hyperinsulinemic-euglycemic clamp and amino acid infusion. Fasting total plasma amino acids were lower in pregnancy in normal but not IDDM women (2,631 ± 427 vs. 2,057 ± 471 and 2,523 ± 430 vs. 2,500 ± 440 μmol/l, respectively). Whole body protein breakdown (leucine) increased in pregnancy [change in normal (ΔN) and IDDM women (ΔD) 0.59 ± 0.40 and 0.48 ± 0.26 g · kg−1 · day−1, both P < 0.001], whereas reductions in protein breakdown due to insulin/amino acids (ΔN −0.57 ± 0.19, ΔD −0.58 ± 0.20 g · kg−1 · day−1, both P < 0.001) were unaffected by pregnancy. Protein breakdown in IDDM women was not higher than normal, and neither pregnancy nor type 1 diabetes altered the insulin sensitivity of amino acid turnover. Nonoxidized leucine disposal (protein synthesis) increased in pregnancy (ΔN 0.67 ± 0.45, ΔD 0.64 ± 0.34 g · kg−1 · day−1, both P < 0.001). Pregnancy reduced the response of phenylalanine hydroxylation to insulin/amino acids in both groups (ΔN −1.14 ± 0.74, ΔD −1.12 ± 0.77 g · kg−1 · day−1, both P < 0.05). These alterations may enable amino acid conservation for protein synthesis and accretion in late pregnancy. Well-controlled type 1 diabetes caused no abnormalities in the regulation of basal or stimulated protein metabolism.


1990 ◽  
Vol 259 (1) ◽  
pp. E36-E51 ◽  
Author(s):  
Y. M. Yu ◽  
D. A. Wagner ◽  
E. E. Tredget ◽  
J. A. Walaszewski ◽  
J. F. Burke ◽  
...  

The role of the splanchnic region (Sp) in whole body leucine metabolism was assessed in six chronically catheterized fasting mongrel dogs and in eight dogs during constant enteral feeding of a complete amino acid solution (0.24 g.kg-1.h-1). We used primed continuous intravenous infusions of L-[1-13C,15N]leucine and L-[1-14C]leucine and measurements of arteriovenous isotope and leucine balance across the gut, liver, and Sp. In the fasted condition, 3.5% of arterial leucine supply was oxidized in the Sp, accounting for 13% of total body leucine oxidation, with 10% by liver. With amino acid feeding 1) leucine carbon and nitrogen fluxes and oxidation were increased (P less than 0.01) at the whole body level; 2) the percent of whole body leucine oxidation occurring in the Sp and liver increased (P less than 0.01) to 41 and 27%, respectively; 3) fractional metabolic utilization of leucine delivered to the Sp was reduced (P less than 0.01) from 47 to 35%; 4) the deamination rate of leucine in the gut was increased (P less than 0.05), along with an increased reamination rate of alpha-ketoisocaproic acid in the Sp (P less than 0.05). These findings reveal that the Sp accounts for a small fraction of whole body leucine oxidation during the fasting condition, but it plays a quantitatively important role in total body leucine oxidation during amino acid feeding; the gut and liver play cooperative roles in controlling leucine supply to peripheral tissues.


Author(s):  
Melynda S. Coker ◽  
Kaylee R. Ladd ◽  
Scott E. Schutzler ◽  
Sanghee Park ◽  
Rick H. Williams ◽  
...  

Wild game consumption has been associated with health benefits, but the influence on protein metabolism remains unknown. We compared the feeding-induced response to 2 oz of free-range reindeer (FR) versus commercial beef (CB) using stable isotope methodology. Seven male and female participants (age: 38&plusmn;12 years; body mass index: 24&plusmn;3 kg/m2) completed two studies using a randomized, crossover design in which they ingested 2 oz of FR or CB. L-[ring 2H5]phenylalanine &amp; L-[ring 2H2]tyrosine were delivered via primed, continuous intravenous infusion. Blood samples were collected during the basal period and following consumption of FR or CB. Feeding-induced changes in whole body protein synthesis (PS), protein breakdown (PB), and net protein balance (NB) were determined via analysis of plasma samples for phenyalanine and tyrosine enrichment by gas chromatography mass spectrometry; plasma essential amino acid concentrations were determined by liquid chromatography-electrospray ionization-mass spectrometry. Plasma post-prandial essential amino acid (EAA) concentrations were higher with the ingestion of FR compared to CB (P=0.02). The acute feeding-induced response in PS was not different in either trial, but PB was reduced with the ingestion of FR compared to CB (P&lt;0.0001). The difference in PB contributed to a superior level of NB (P&lt;0.0001). When protein kinetics were normalized relative to the amino acids ingested, PB/EAAs and total amino acids ingested were reduced (P&lt;0.01 and 0.001, respectively) in FR compared to CB; contributing to greater NB/total amino acid ingested (P&lt;0.0001) between FR and CB. We conclude that the nutrient profiles of FR may have a more favorable benefit on protein metabolism compared to CB. These data support the potential health benefits of wild game in the preservation of whole-body protein.


Sign in / Sign up

Export Citation Format

Share Document