Adrenal secretion of BAM-22P, a potent opioid peptide, is enhanced in rats with acute cholestasis

1994 ◽  
Vol 266 (2) ◽  
pp. G201-G205 ◽  
Author(s):  
M. G. Swain ◽  
L. MacArthur ◽  
J. Vergalla ◽  
E. A. Jones

The adrenal gland is known to produce and release endogenous opioids into the circulation. Bovine adrenal medulla docosapeptide (BAM-22P) is a potent opioid agonist, derived from the proenkephalin A gene, which is present in the adrenal medulla. This study was undertaken to determine whether BAM-22P is released into plasma during acute cholestatic liver injury, which increases plasma total opioid activity. Acute cholestasis was induced by bile duct ligation or administration of the hepatotoxin alpha-naphthylisothiocyanate. Plasma levels of BAM-22P were determined by a sensitive radioimmunoassay, and the specificity of the assay was confirmed using high-performance liquid chromatography. Plasma BAM-22P levels was cholestatic rats were significantly higher than those in control rats. This increase in plasma BAM-22P levels was completely prevented by adrenalectomy. Adrenal steady-state levels of proenkephalin mRNA, as determined by Northern blot hybridization analyses, were also increased significantly in cholestatic rats. These increases in proenkephalin mRNA levels were not paralleled by changes in adrenal BAM-22P peptide levels, which were similar in cholestatic rats and their respective controls. Similar levels of proenkephalin mRNA expression were observed in innervated and denervated adrenal glands from cholestatic rats, suggesting that the increase in adrenal proenkephalin mRNA levels in acute cholestasis is not due to splanchnic nerve activation. Thus acute cholestasis in the rat is associated with adrenal secretion and accumulation in plasma of the highly potent opioid peptide BAM-22P and an augmentation of adrenal proenkephalin mRNA expression. The increase in plasma BAM-22P levels may contribute substantially to the increase in total circulating opioid activity documented in cholestatic rats.

1998 ◽  
Vol 76 (3) ◽  
pp. 284-293 ◽  
Author(s):  
Frances M Leslie ◽  
Yiling Chen ◽  
Ursula H Winzer-Serhan

There is increasing evidence to suggest that opioid peptides may have widespread effects as regulators of growth. To evaluate the hypothesis that endogenous opioids control cellular proliferation during neural development, we have used in situ hybridization to examine opioid peptide and receptor mRNA expression in neuroepithelial zones of fetal rat brain and spinal cord. Our data show that proenkephalin mRNA is widely expressed in forebrain germinal zones and choroid plexus during the second half of gestation. In contrast, prodynorphin mRNA expression is restricted to the periventricular region of the ventral spinal cord. Little µ or delta receptor mRNA expression was detected in any regions of neuronal proliferation prior to birth. However, kappa receptor mRNA is widely expressed in hindbrain germinal zones during the 3rd week of gestation. Our present findings support the hypothesis that endogenous opioids may regulate proliferation of both neuronal and non-neuronal cells during central nervous system development. Given the segregated expression of proenkephalin mRNA in forebrain neuroepithelium and kappa receptor mRNA within hindbrain, different opioid mechanisms may regulate cell division in rostral and caudal brain regions.Key words: enkephalin, dynorphin, ontogeny, neurogenesis.


Endocrinology ◽  
2006 ◽  
Vol 147 (9) ◽  
pp. 4486-4495 ◽  
Author(s):  
Valerie S. Densmore ◽  
Nicholas M. Morton ◽  
John J. Mullins ◽  
Jonathan R. Seckl

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes regeneration of active intracellular glucocorticoids in fat, liver, and discrete brain regions. Although overexpression of 11β-HSD1 in adipose tissue causes hyperphagia and the metabolic syndrome, male 11β-HSD1 null (11β-HSD1−/−) mice resist metabolic disease on high-fat (HF) diet, but also show hyperphagia. This suggests 11β-HSD1 may influence the central actions of glucocorticoids on appetite and perhaps energy balance. We show that 11β-HSD1−/− mice express lower hypothalamic mRNA levels of the anorexigenic cocaine and amphetamine-regulated transcript and melanocortin-4 receptor, but higher levels of the orexigenic melanin-concentrating hormone mRNAs than controls (C57BL/6J) on a low-fat diet (11% fat). HF (58% fat) diet promoted transient (∼8 wk) hyperphagia and decreased food efficiency in 11β-HSD1−/− mice and decreased melanocortin-4 receptor mRNA expression in control but not 11β-HSD1−/− mice. 11β-HSD1−/− mice showed a HF-mediated up-regulation of the orexigenic agouti-related peptide (AGRP) mRNA in the arcuate nucleus which paralleled the transient HF hyperphagia. Conversely, control mice showed a rapid (48 h) HF-mediated increase in arcuate 11β-HSD1 associated with subsequent down-regulation of AGRP. This regulatory pattern was unexpected because glucocorticoids increase AGRP, suggesting an alternate hyperphagic mechanism despite partial colocalization of 11β-HSD1 and AGRP in arcuate nucleus cells. One major alternate mechanism governing selective fat ingestion and the AGRP system is endogenous opioids. Treatment of HF-fed mice with the μ opioid agonist DAMGO recapitulated the HF-induced dissociation of arcuate AGRP expression between control and 11β-HSD1−/− mice, whereas the opioid antagonist naloxone given with HF induced a rise in arcuate AGRP and blocked HF-diet induction of 11β-HSD1. These data suggest that 11β-HSD1 in brain plays a role in the adaptive restraint of excess fat intake, in part by increasing inhibitory opioid tone on AGRP expression in the arcuate nucleus.


Life Sciences ◽  
2002 ◽  
Vol 70 (24) ◽  
pp. 2915-2929 ◽  
Author(s):  
Yung-Hi Kim ◽  
Je-Seong Won ◽  
Moo-Ho Won ◽  
Jin-Koo Lee ◽  
Hong-Won Suh

2020 ◽  
Vol 13 (11) ◽  
pp. 407
Author(s):  
Kai-Chun Cheng ◽  
Ying-Xiao Li ◽  
Po-Chuen Shieh ◽  
Juei-Tang Cheng ◽  
Chia-Chen Hsu

Liraglutide, an acylated analog of glucagon-like peptide 1 (GLP-1), could improve glycemic control in diabetes. Moreover, endogenous opioid peptides play a role in blood sugar regulation. Since GLP-1 receptors are also expressed in extra-pancreatic tissues, this study investigates the effect of liraglutide on endogenous opioid secretion in type 1-like diabetes. The endogenous opioid level was determined by enzyme-linked immunosorbent assay. The direct effect of liraglutide on endogenous opioid secretion was determined in the isolated adrenal medulla. Acute treatment with liraglutide dose-dependently attenuated hyperglycemia, and increased the plasma opioid neuropeptide, beta-endorphin (BER) levels in diabetic rats. These effects have been blocked by GLP-1 receptor antagonist, naloxone. Additionally, the effects of liraglutide were markedly reduced in adrenalectomized diabetic rats. In the isolated adrenal medulla, liraglutide induced BER secretion and increased the BER mRNA levels. Subcellular effects of liraglutide on the adrenal gland were further identified to mediate through the exchange proteins directly activated by cAMP, mainly using the pharmacological blockade. After repeatedly administering liraglutide, metabolic changes in diabetic rats were investigated, and genes associated with gluconeogenesis in the liver were downregulated. Naloxone pretreatment inhibited these effects of liraglutide, indicating the involvement of endogenous opioids. The present study indicated that liraglutide had an acute effect of reducing hyperglycemia by regulating endogenous opioid BER and modifying the glucose homeostasis.


2020 ◽  
Vol 22 (1) ◽  
pp. 164
Author(s):  
Khosbayar Lkhagvadorj ◽  
Zhijun Zeng ◽  
Karolin F. Meyer ◽  
Laura P. Verweij ◽  
Wierd Kooistra ◽  
...  

Prenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation. In this study we investigated whether PostSE further impaired PreSE-induced effects on nicotine metabolism, along with Cyp2a5, orthologue of CYP2A6, mRNA expression and DNA methylation. Using a mouse model where prenatally smoke-exposed adult offspring were exposed to cigarette smoke for 3 months, enzyme activity, mRNA levels, and promoter methylation of hepatic Cyp2a5 were evaluated. We found that in male offspring, PostSE increased PreSE-induced cotinine levels and Cyp2a5 mRNA expression. In addition, both PostSE and PreSE changed Cyp2a5 DNA methylation in male groups. PreSE however decreased cotinine levels whereas it had no effect on Cyp2a5 mRNA expression or methylation. These adverse outcomes of PreSE and PostSE were most prominent in males. When considered in the context of the human health aspects, the combined effect of prenatal and adolescent smoke exposure could lead to an accelerated risk for nicotine dependence later in life.


2021 ◽  
Vol 22 (14) ◽  
pp. 7298
Author(s):  
Izabela Rudzińska ◽  
Małgorzata Cieśla ◽  
Tomasz W. Turowski ◽  
Alicja Armatowska ◽  
Ewa Leśniewska ◽  
...  

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Birhan Alemnew ◽  
Soren T. Hoff ◽  
Tamrat Abebe ◽  
Markos Abebe ◽  
Abraham Aseffa ◽  
...  

Abstract Background Understanding immune mechanisms, particularly the role of innate immune markers during latent TB infection remains elusive. The main objective of this study was to evaluate mRNA gene expression patterns of toll-like receptors (TLRs) as correlates of immunity during latent TB infection and further infer their roles as potential diagnostic biomarkers. Methods Messenger RNA (mRNA) levels were analysed in a total of 64 samples collected from apparently healthy children and adolescents latently infected with tuberculosis (n = 32) or non-infected (n = 32). Relative expression in peripheral blood of selected genes encoding TLRs (TLR-1, TLR-2, TLR-4, TLR-6 and TLR-9) was determined with a quantitative real-time polymerase chain reaction (qRT-PCR) using specific primers and florescent labelled probes and a comparative threshold cycle method to define fold change. Data were analysed using Graph-Pad Prism 7.01 for Windows and a p-value less than 0.05 was considered statistically significant. Results An increased mean fold change in the relative expression of TLR-2 and TLR-6 mRNA was observed in LTBI groups relative to non-LTBI groups (p < 0.05), whereas a slight fold decrease was observed for TLR-1 gene. Conclusions An increased mRNA expression of TLR-2 and TLR-6 was observed in latently infected individuals relative to those non-infected, possibly indicating the roles these biomarkers play in sustenance of the steady state interaction between the dormant TB bacilli and host immunity.


2016 ◽  
Vol 397 (12) ◽  
pp. 1265-1276 ◽  
Author(s):  
Nancy Ahmed ◽  
Julia Dorn ◽  
Rudolf Napieralski ◽  
Enken Drecoll ◽  
Matthias Kotzsch ◽  
...  

Abstract Most members of the kallikrein-related peptidase family have been demonstrated to be dysregulated in ovarian cancer and modulate tumor growth, migration, invasion, and resistance to chemotherapy. In the present study, we assessed the mRNA expression levels of KLK6 and KLK8 by quantitative PCR in 100 patients with advanced serous ovarian cancer FIGO stage III/IV. A pronounced correlation between KLK6 and KLK8 mRNA expression (rs = 0.636, p < 0.001) was observed, indicating coordinate expression of both peptidases. No significant associations of clinical parameters with KLK6, KLK8, and a combined score KLK6+KLK8 were found. In univariate Cox regression analysis, elevated mRNA levels of KLK6 were significantly linked with shortened overall survival (OS) (hazard ratio [HR] = 2.07, p = 0.007). While KLK8 values were not associated with patients’ outcome, high KLK6+KLK8 values were significantly associated with shorter progression-free survival (HR = 1.82, p = 0.047) and showed a trend towards significance in the case of OS (HR = 1.82, p = 0.053). Strikingly, in multivariable analysis, elevated KLK6 mRNA values, apart from residual tumor mass, remained an independent predictive marker for poor OS (HR = 2.33, p = 0.005). As KLK6 mRNA and protein levels correlate, KLK6 may represent an attractive therapeutic target for potent and specific inhibitors of its enzymatic activity.


2008 ◽  
Vol 100 (4) ◽  
pp. 2015-2025 ◽  
Author(s):  
Julie E. Miller ◽  
Elizabeth Spiteri ◽  
Michael C. Condro ◽  
Ryan T. Dosumu-Johnson ◽  
Daniel H. Geschwind ◽  
...  

Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


Sign in / Sign up

Export Citation Format

Share Document