scholarly journals Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects

2009 ◽  
Vol 296 (4) ◽  
pp. G735-G739 ◽  
Author(s):  
Jing Ma ◽  
Max Bellon ◽  
Judith M. Wishart ◽  
Richard Young ◽  
L. Ashley Blackshaw ◽  
...  

The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in glucose homeostasis in both health and diabetes. In mice, sucralose, an artificial sweetener, stimulates GLP-1 release via sweet taste receptors on enteroendocrine cells. We studied blood glucose, plasma levels of insulin, GLP-1, and GIP, and gastric emptying (by a breath test) in 7 healthy humans after intragastric infusions of 1) 50 g sucrose in water to a total volume of 500 ml (∼290 mosmol/l), 2) 80 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 0.4 mM sucralose), 3) 800 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 4 mM sucralose), and 4) 500 ml normal saline (∼300 mosmol/l), all labeled with 150 mg 13C-acetate. Blood glucose increased only in response to sucrose ( P < 0.05). GLP-1, GIP, and insulin also increased after sucrose ( P = 0.0001) but not after either load of sucralose or saline. Gastric emptying of sucrose was slower than that of saline ( t50: 87.4 ± 4.1 min vs. 74.7 ± 3.2 min, P < 0.005), whereas there were no differences in t50 between sucralose 0.4 mM (73.7 ± 3.1 min) or 4 mM (76.7 ± 3.1 min) and saline. We conclude that sucralose, delivered by intragastric infusion, does not stimulate insulin, GLP-1, or GIP release or slow gastric emptying in healthy humans.

2010 ◽  
Vol 104 (6) ◽  
pp. 803-806 ◽  
Author(s):  
Jing Ma ◽  
Jessica Chang ◽  
Helen L. Checklin ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
...  

It has been reported that the artificial sweetener, sucralose, stimulates glucose absorption in rodents by enhancing apical availability of the transporter GLUT2. We evaluated whether exposure of the proximal small intestine to sucralose affects glucose absorption and/or the glycaemic response to an intraduodenal (ID) glucose infusion in healthy human subjects. Ten healthy subjects were studied on two separate occasions in a single-blind, randomised order. Each subject received an ID infusion of sucralose (4 mm in 0·9 % saline) or control (0·9 % saline) at 4 ml/min for 150 min (T = − 30 to 120 min). After 30 min (T = 0), glucose (25 %) and its non-metabolised analogue, 3-O-methylglucose (3-OMG; 2·5 %), were co-infused intraduodenally (T = 0–120 min; 4·2 kJ/min (1 kcal/min)). Blood was sampled at frequent intervals. Blood glucose, plasma glucagon-like peptide-1 (GLP-1) and serum 3-OMG concentrations increased during ID glucose/3-OMG infusion (P < 0·005 for each). However, there were no differences in blood glucose, plasma GLP-1 or serum 3-OMG concentrations between sucralose and control infusions. In conclusion, sucralose does not appear to modify the rate of glucose absorption or the glycaemic or incretin response to ID glucose infusion when given acutely in healthy human subjects.


2000 ◽  
Vol 278 (2) ◽  
pp. R360-R366 ◽  
Author(s):  
C. K. Rayner ◽  
H. S. Park ◽  
J. M. Wishart ◽  
M.-F. Kong ◽  
S. M. Doran ◽  
...  

Oral fructose empties from the stomach more rapidly and may suppress food intake more than oral glucose. The purpose of the study was to evaluate the effects of intraduodenal infusions of fructose and glucose on antropyloric motility and appetite. Ten healthy volunteers were given intraduodenal infusions of 25% fructose, 25% glucose, or 0.9% saline (2 ml/min for 90 min). Antropyloric pressures, blood glucose, and plasma insulin, gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) were measured concurrently; a buffet meal was offered at the end of the infusion. Intraduodenal fructose and glucose suppressed antral waves ( P < 0.0005 for both), stimulated isolated pyloric pressure waves ( P < 0.05 for both), and increased basal pyloric pressure ( P = 0.10 and P < 0.05, respectively) compared with saline, without any significant difference between them. Intraduodenal glucose increased blood glucose ( P < 0.0005), as well as plasma insulin ( P < 0.0005) and GIP ( P < 0.005) more than intraduodenal fructose, whereas there was no difference in the GLP-1 response. Intraduodenal fructose suppressed food intake compared with saline ( P < 0.05) and glucose ( P = 0.07). We conclude that, when infused intraduodenally at 2 kcal/min for 90 min 1) fructose and glucose have comparable effects on antropyloric pressures, 2) fructose tends to suppress food intake more than glucose, despite similar GLP-1 and less GIP release, and 3) GIP, rather than GLP-1, probably accounts for the greater insulin response to glucose than fructose.


2009 ◽  
Vol 297 (3) ◽  
pp. G602-G610 ◽  
Author(s):  
Ixchel M. Brennan ◽  
Kate L. Feltrin ◽  
Nivasinee S. Nair ◽  
Trygve Hausken ◽  
Tanya J. Little ◽  
...  

There is evidence that the menstrual cycle affects appetite, such that energy intake is lower during the follicular compared with the luteal phase. Gastric emptying influences energy intake, glycemia, and plasma glucagon-like peptide-1 (GLP-1), insulin, and cholecystokinin (CCK) release. We hypothesized that 1) gastric emptying of a glucose drink is slower, and glycemia, plasma hormones, hunger, and energy intake are less, during the follicular compared with the luteal phase; 2) the reduction in the latter parameters during the follicular phase are related to slower gastric emptying; and 3) these parameters are reproducible when assessed twice within a particular phase of the menstrual cycle. Nine healthy, lean women were studied on three separate occasions: twice during the follicular phase ( days 6- 12) and once during the luteal phase ( days 18- 24). Following consumption of a 300-ml glucose drink (0.17 g/ml), gastric emptying, blood glucose, plasma hormone concentrations, and hunger were measured for 90 min, after which energy intake at a buffet meal was quantified. During the follicular phase, gastric emptying was slower ( P < 0.05), and blood glucose ( P < 0.01), plasma GLP-1 and insulin ( P < 0.05), hunger ( P < 0.01), and energy intake ( P < 0.05) were lower compared with the luteal phase, with no differences for CCK or between the two follicular phase visits. There were inverse relationships between energy intake, blood glucose, and plasma GLP-1 and insulin concentrations with the amount of glucose drink remaining in the stomach at t = 90 min ( r < −0.6, P < 0.05). In conclusion, in healthy women 1) gastric emptying of glucose is slower, and glycemia, plasma GLP-1 and insulin, hunger, and energy intake are less during the follicular compared with the luteal phase; 2) energy intake, glycemia, and plasma GLP-1 and insulin are related to gastric emptying; and 3) these parameters are reproducible when assessed twice during the follicular phase.


2007 ◽  
Vol 293 (3) ◽  
pp. E743-E753 ◽  
Author(s):  
Amelia N. Pilichiewicz ◽  
Reawika Chaikomin ◽  
Ixchel M. Brennan ◽  
Judith M. Wishart ◽  
Christopher K. Rayner ◽  
...  

Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 (“G1”), 2) 2 (“G2”), and 3) 4 (“G4”) kcal/min or of 4) saline (“control”) were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions ( P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 ( P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load ( r > 0.82, P < 0.05). All glucose infusions suppressed antral ( P < 0.05), but only G4 decreased duodenal, pressure waves ( P < 0.01), resulted in a sustained stimulation of basal pyloric pressure ( P < 0.01), and decreased energy intake ( P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.


2008 ◽  
Vol 101 (7) ◽  
pp. 1094-1102 ◽  
Author(s):  
Nivasinee S. Nair ◽  
Ixchel M. Brennan ◽  
Tanya J. Little ◽  
Diana Gentilcore ◽  
Trygve Hausken ◽  
...  

Gastric emptying, as well as intragastric meal distribution, and gastrointestinal hormones, including cholecystokinin (CCK), play an important role in appetite regulation. The evaluation of gastrointestinal factors regulating food intake is commonly performed in healthy, lean, young male participants. It has, however, been suggested that there is a marked interindividual variability in the effects of nutrient ‘preloads’ on energy intake in this group. Whether there is significant intraindividual variation in acute energy intake after a nutrient preload, and, if so, how this relates to day-to-day differences in gastric emptying and gastrointestinal hormone release, is unclear. The purpose of the present paper is to evaluate the hypothesis that energy intake after a nutrient preload would be reproducible and associated with reproducible patterns of gastric emptying, intragastric distribution and gastrointestinal hormone release. Fifteen healthy men (age 25 (sem5) years) consumed a glucose preload (50 g glucose in 300 ml water; 815 kJ) on three occasions. Gastric emptying and intragastric meal distribution (using three-dimensional ultrasound), blood glucose, plasma insulin and CCK concentrations and appetite perceptions were evaluated over 90 min, and energy intake from a cold buffet-style meal was then quantified. Energy intake was highly reproducible within individuals between visits (intraclass correlation coefficient,ri = 0·9). Gastric emptying, intragastric meal distribution, blood glucose, plasma insulin and CCK concentrations and appetite perceptions did not differ between visits (ri>0·7 for all). In healthy males, energy intake is highly reproducible, at least in the short term, and is associated with reproducible patterns of gastric emptying, glycaemia, insulinaemia and CCK release.


2009 ◽  
Vol 296 (3) ◽  
pp. E473-E479 ◽  
Author(s):  
Yukihiro Fujita ◽  
Rhonda D. Wideman ◽  
Madeleine Speck ◽  
Ali Asadi ◽  
David S. King ◽  
...  

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are released during meals from endocrine cells located in the gut mucosa and stimulate insulin secretion from pancreatic β-cells in a glucose-dependent manner. Although the gut epithelium senses luminal sugars, the mechanism of sugar sensing and its downstream events coupled to the release of the incretin hormones are not clearly elucidated. Recently, it was reported that sucralose, a sweetener that activates the sweet receptors of taste buds, triggers incretin release from a murine enteroendocrine cell line in vitro. We confirmed that immunoreactivity of α-gustducin, a key G-coupled protein involved in taste sensing, is sometimes colocalized with GIP in rat duodenum. We investigated whether secretion of incretins in response to carbohydrates is mediated via taste receptors by feeding rats the sweet-tasting compounds saccharin, acesulfame potassium, d-tryptophan, sucralose, or stevia. Oral gavage of these sweeteners did not reduce the blood glucose excursion to a subsequent intraperitoneal glucose tolerance test. Neither oral sucralose nor oral stevia reduced blood glucose levels in Zucker diabetic fatty rats. Finally, whereas oral glucose increased plasma GIP levels ∼4-fold and GLP-1 levels ∼2.5-fold postadministration, none of the sweeteners tested significantly increased levels of these incretins. Collectively, our findings do not support the concept that release of incretins from enteroendocrine cells is triggered by carbohydrates via a pathway identical to the sensation of “sweet taste” in the tongue.


2014 ◽  
Vol 306 (4) ◽  
pp. G301-G309 ◽  
Author(s):  
Sara Chowdhury ◽  
Dominic N. Reeds ◽  
Dan L. Crimmins ◽  
Bruce W. Patterson ◽  
Erin Laciny ◽  
...  

Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10–14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol·kg−1·min−1 was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.


1997 ◽  
Vol 273 (5) ◽  
pp. E981-E988 ◽  
Author(s):  
Michael A. Nauck ◽  
Ulrich Niedereichholz ◽  
Rainer Ettler ◽  
Jens Juul Holst ◽  
Cathrine Ørskov ◽  
...  

Glucagon-like peptide 1 (GLP-1) has been shown to inhibit gastric emptying of liquid meals in type 2 diabetic patients. It was the aim of the present study to compare the action of physiological and pharmacological doses of intravenous GLP-1-(7—36) amide and GLP-1-(7—37) on gastric emptying in normal volunteers. Nine healthy subjects participated (26 ± 3 yr; body mass index 22.9 ± 1.6 kg/m2; hemoglobin A1C 5.0 ± 0.2%) in five experiments on separate occasions after an overnight fast. A nasogastric tube was positioned for the determination of gastric volume by use of a dye-dilution technique (phenol red). GLP-1-(7—36) amide (0.4, 0.8, or 1.2 pmol ⋅ kg−1 ⋅ min−1), GLP-1-(7—37) (1.2 pmol ⋅ kg−1 ⋅ min−1), or placebo was infused intravenously from −30 to 240 min. A liquid meal (50 g sucrose, 8% amino acids, 440 ml, 327 kcal) was administered at 0 min. Glucose, insulin, and C-peptide were measured over 240 min. Gastric emptying was dose dependently slowed by GLP-1-(7—36) amide ( P < 0.0001). Effects of GLP-1-(7—37) at 1.2 pmol ⋅ kg−1 ⋅ min−1were virtually identical. GLP-1 dose dependently stimulated fasting insulin secretion (−30 to 0 min) and slightly reduced glucose concentrations. After the meal (0–240 min), integrated incremental glucose ( P < 0.0001) and insulin responses ( P = 0.01) were reduced (dose dependently) rather than enhanced. In conclusion, 1) GLP-1-(7—36) amide or -(7—37) inhibits gastric emptying also in normal subjects, 2) physiological doses (0.4 pmol ⋅ kg−1 ⋅ min−1) still have a significant effect, 3) despite the known insulinotropic actions of GLP-1-(7—36) amide and -(7—37), the net effect of administering GLP-1 with a meal is no change or a reduction in meal-related insulin responses. These findings suggest a primarily inhibitory function for GLP-1 (ileal brake mechanisms).


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 990
Author(s):  
Moemi Iwamura ◽  
Risa Honda ◽  
Kazuki Nagasawa

The gustation system for sweeteners is well-known to be regulated by nutritional and metabolic conditions, but there is no or little information on the underlying mechanism. Here, we examined whether elevation of the blood glucose level was involved in alteration of the expression of sweet taste receptors in circumvallate papillae (CP) and sweet taste sensitivity in male Sprague-Dawley rats. Rats under 4 h-fed conditions following 18 h-fasting exhibited elevated blood glucose levels and decreased pancreatic T1R3 expression, compared to rats after 18 h-fasting treatment, and they exhibited increased protein expression of sweet taste receptors T1R2 and T1R3 in CP. Under streptozotocin (STZ)-induced diabetes mellites (DM) conditions, the protein expression levels of T1R2 and T1R3 in CP were higher than those under control conditions, and these DM rats exhibited increased lick ratios in a low sucrose concentration range in a brief access test with a mixture of sucrose and quinine hydrochloride (QHCl). These findings indicate that the elevation of blood glucose level is a regulator for an increase in sweet taste receptor protein expression in rat CP, and such alteration in STZ-induced DM rats is involved in enhancement of their sweet taste sensitivity.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5670-5678 ◽  
Author(s):  
Adriano Maida ◽  
Julie A. Lovshin ◽  
Laurie L. Baggio ◽  
Daniel J. Drucker

The proglucagon gene gives rise to multiple peptides that play diverse roles in the control of energy intake, gut motility, and nutrient disposal. Glucagon-like peptide-1 (GLP-1), a 30-amino-acid peptide regulates glucose homeostasis via control of insulin and glucagon secretion and by inhibition of gastric emptying and food intake. Oxyntomodulin (OXM) a 37-amino-acid peptide also derived from the proglucagon gene, binds to both the glucagon and GLP-1 receptor (GLP-1R); however, a separate OXM receptor has not yet been identified. Here we show that OXM, like other GLP-1R agonists, stimulates cAMP formation and lowers blood glucose after both oral and ip glucose administration, actions that require a functional GLP-1R. OXM also directly stimulates insulin secretion from murine islets and INS-1 cells in a glucose- and GLP-1R-dependent manner. Moreover, OXM ameliorates hyperglycemia and significantly reduces apoptosis in murine β-cells after streptozotocin administration and directly reduces apoptosis in thapsigargin-treated INS-1 cells. Unexpectedly, OXM, but not the GLP-1R agonist exendin-4, increased plasma levels of insulin after oral glucose administration. Moreover, OXM administered at doses that potently lower blood glucose had no effect on inhibition of gastric emptying but reduced food intake in WT mice. Taken together, these findings illustrate that although structurally distinct proglucagon-derived peptides such as GLP-1 and OXM engage the GLP-1R, OXM mimics some but not all of the actions of GLP-1R agonists in vivo. These findings may have implications for therapeutic efforts using OXM as a long-acting GLP-1R agonist for the treatment of metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document