Profibrotic influence of high glucose concentration on cardiac fibroblast functions: effects of losartan and vitamin E

2005 ◽  
Vol 288 (1) ◽  
pp. H227-H234 ◽  
Author(s):  
Juan Asbun ◽  
Ana Maria Manso ◽  
Francisco J. Villarreal

Long-standing diabetes can result in the development of cardiomyopathy, which can be accompanied by myocardial fibrosis. Although exposure of cultured kidney and skin fibroblasts to high glucose (HG) concentration is known to increase collagen synthesis, little is known about cardiac fibroblasts (CFs). Therefore, we determined the influence of HG conditions on CF functions and the effects of losartan and vitamin E in these responses. We cultured rat CFs in either normal glucose (NG; 5.5 mM) or HG (25 mM) media and assessed changes in protein and collagen synthesis, matrix metalloproteinase (MMP) activity, and levels of mRNA for ANG II type 1 (AT1) receptors. Results indicate that HG-level CFs synthesized more protein and collagen, and these effects were not due to changes in osmotic pressure. The addition of ANG II stimulated protein and collagen synthesis in NG-concentration but not HG-concentration CFs. Interestingly, losartan pretreatment blocked the HG- or ANG II-induced increases in both protein and collagen synthesis. HG or ANG II decreased total MMP activity. Decreases in MMP activity were blocked by losartan. AT1 mRNA levels were upregulated with HG concentration. Vitamin E pretreatment blocked the effects of HG on total protein synthesis and stimulated MMP activity. Results suggest that HG levels may promote fibrosis by increasing CF protein and collagen synthesis and decreasing MMP activity. HG levels may cause these effects via the upregulation of AT1 receptors, which can be blocked by losartan. However, vitamin E can alter HG concentration-induced changes in CF functions independently of AT1 mRNA levels.

2014 ◽  
Vol 306 (9) ◽  
pp. C794-C804 ◽  
Author(s):  
Hugo Aguilar ◽  
Eduardo Fricovsky ◽  
Sang Ihm ◽  
Magdalena Schimke ◽  
Lisandro Maya-Ramos ◽  
...  

Excess enzyme-mediated protein O-GlcNAcylation is known to occur with diabetes mellitus. A characteristic of diabetic cardiomyopathy is the development of myocardial fibrosis. The role that enhanced protein O-GlcNAcylation plays in modulating the phenotype of cardiac fibroblasts (CF) is unknown. To address this issue, rat CF were cultured in normal glucose (NG; 5 mM glucose) or high-glucose (HG; 25 mM) media for 48 h. Results demonstrate that CF cultured in HG have higher levels (∼50%) of overall protein O-GlcNAcylation vs. NG cells. Key regulators of collagen synthesis such as transforming-growth factor-β1 (TGF-β1), SMADs 2/3, and SMAD 7 protein levels, including those of arginase I and II, were altered, leading to increases in collagen levels. The nuclear transcription factor Sp1 and arginase II evidence excess O-GlcNAcylation in HG cells. Expression in CF of an adenovirus coding for the enzyme N-acetylglucosaminidase, which removes O-GlcNAc moieties from proteins, decreased Sp1 and arginase II O-GlcNAcylation and restored HG-induced perturbations in CF back to NG levels. These findings may have important pathophysiological implications for the development of diabetes-induced cardiac fibrosis.


2001 ◽  
Vol 280 (4) ◽  
pp. F667-F674 ◽  
Author(s):  
Chhinder P. Sodhi ◽  
Sarojini A. Phadke ◽  
Daniel Batlle ◽  
Atul Sahai

The effect of hypoxia on the proliferation and collagen synthesis of cultured rat mesangial cells was examined under normal-glucose (NG, 5 mM) and high-glucose (HG, 25 mM)-media conditions. In addition, a role for osteopontin (OPN) in mediating these processes was assessed. Quiescent cultures were exposed to hypoxia (3% O2) and normoxia (18% O2) in a serum-free medium with NG or HG, and cell proliferation, collagen synthesis, and OPN expression were assessed. Cells exposed to hypoxia in NG medium resulted in significant increases in [3H]thymidine incorporation, cell number, and [3H]proline incorporation, respectively. HG incubations also produced significant stimulation of these parameters under normoxic conditions, which were markedly enhanced in cells exposed to hypoxia in HG medium. In addition, hypoxia and HG stimulated the mRNA levels of type IV collagen, and the combination of hypoxia and HG resulted in additive increases in type IV collagen expression. Hypoxia and HG also stimulated OPN mRNA and protein levels in an additive fashion. A neutralizing antibody to OPN or its β3-integrin receptor significantly blocked the effect of hypoxia and HG on proliferation and collagen synthesis. In conclusion, these results demonstrate for the first time that hypoxia in HG medium produces exaggerated mesangial cell growth and type IV collagen synthesis. In addition, OPN appears to play a role in mediating the accelerated mesangial cell growth and collagen synthesis found in a hyperglycemic and hypoxic environment.


2018 ◽  
Vol 19 (9) ◽  
pp. 2621
Author(s):  
Maxime Pellegrin ◽  
Karima Bouzourène ◽  
Jean-François Aubert ◽  
Aimable Nahimana ◽  
Michel Duchosal ◽  
...  

Angiotensin (Ang) II triggers vulnerable atherosclerotic plaque development. Bone marrow (BM)-derived cells are key players in atherogenesis but whether Ang II induces plaque vulnerability directly through Ang II type 1 receptor (AT1R) activation on these cells remains to be clarified. In the present study, we investigated whether a lack of AT1R on BM-derived cells might affect Ang II-mediated vulnerable plaque development. The 2-kidney, 1-clip (2K1C) model (Ang II-dependent mouse model of advanced atherosclerosis and vulnerable plaques) was generated in ApoE−/− mice transplanted with AT1aR−/− or AT1aR+/+ BM. Plasma cholesterol as well as hepatic mRNA expression levels of genes involved in cholesterol metabolism were significantly lower in 2K1C mice transplanted with AT1aR−/− BM than in controls. Atherosclerotic lesions were significantly smaller in AT1aR−/− BM 2K1C mice (−79% in the aortic sinus and −71% in whole aorta compared to controls). Plaques from AT1aR−/− BM 2K1C mice exhibited reduced lipid core/fibrous cap and macrophage/smooth muscle cells ratios (−82% and −88%, respectively), and increased collagen content (+70%), indicating a more stable phenotype. Moreover, aortic mRNA levels of pro-inflammatory cytokines IL-12p35, IL-1β, and TNF-α were significantly reduced in AT1aR−/− BM 2K1C mice. No significant differences in either the number of circulating Ly6Chigh inflammatory monocytes and Ly6Clow resident anti-inflammatory monocyte subsets, or in mRNA levels of aortic M1 or M2 macrophage markers were observed between the two groups. No significant differences were observed in splenic mRNA levels of T cell subsets (Th1, Th2, Th17 and Treg) markers between the two groups. In conclusion, direct AT1R activation by Ang II on BM-derived cells promotes hepatic mRNA expression of cholesterol-metabolism-related genes and vascular mRNA expression of pro-inflammatory cytokines that may lead to plaque instability.


Oncotarget ◽  
2016 ◽  
Vol 7 (38) ◽  
pp. 61703-61715 ◽  
Author(s):  
Xue Liu ◽  
Xiuhui Song ◽  
Jianjun Lu ◽  
Xueying Chen ◽  
Ershun Liang ◽  
...  

1999 ◽  
Vol 276 (5) ◽  
pp. F691-F699 ◽  
Author(s):  
Farhad Amiri ◽  
Raul Garcia

It has been shown that glomerular angiotensin II (ANG II) receptors are downregulated and protein kinase C (PKC) is activated under diabetic conditions. We, therefore, investigated ANG II receptor and PKC isoform regulation in glomerular mesangial cells (MCs) under normal and elevated glucose concentrations. MCs were isolated from collagenase-treated rat glomeruli and cultured in medium containing normal or high glucose concentrations (5.5 and 25.0 mM, respectively). Competitive binding experiments were performed using the ANG II antagonists losartan and PD-123319, and PKC analysis was conducted by Western blotting. Competitive binding studies showed that the AT1 receptor was the only ANG II receptor detected on MCs grown to either subconfluence or confluence under either glucose concentration. AT1 receptor density was significantly downregulated in cells grown to confluence in high-glucose medium. Furthermore, elevated glucose concentration enhanced the presence of all MC PKC isoforms. In addition, PKCβ, PKCγ and PKCε were translocated only in cells cultured in elevated glucose concentrations following 1-min stimulation by ANG II, whereas PKCα, PKCθ, and PKCλ were translocated by ANG II only in cells grown in normal glucose. Moreover, no changes in the translocation of PKCδ, PKCι, PKCζ, and PKCμ were detected in response to ANG II stimulation under euglycemic conditions. We conclude that MCs grown in high glucose concentration show altered ANG II receptor regulation as well as PKC isoform translocation compared with cells grown in normal glucose concentration.


1995 ◽  
Vol 268 (2) ◽  
pp. F220-F226 ◽  
Author(s):  
D. P. Healy ◽  
M. Q. Ye ◽  
M. Troyanovskaya

The physiological effects of angiotensin II (ANG II) on the kidney are mediated primarily by the ANG II type 1 (AT1) receptor. Two highly similar AT1 receptor subtypes have been identified in the rat by molecular cloning techniques, namely AT1A and AT1B. The intrarenal localization of the AT1A and AT1B receptor subtypes has not been studied by hybridization methods with subtype-specific receptor probes. Using radiolabeled probes from the 3' noncoding region of the AT1A and AT1B cDNAs, we localized AT1 mRNA in rat kidney by in situ hybridization. Specificity of the 3' noncoding region probes was tested by Northern blot and solution hybridization methods. AT1A mRNA levels were highest in the liver, kidney, and adrenal. In contrast, AT1B mRNA levels were highest in the adrenal and pituitary and low in kidney. Autoradiographic localization of 125I-[Sar1,Ile8]ANG II binding indicated that the highest levels of AT1 receptors were found in glomeruli and vascular elements. In situ hybridization with a nonselective AT1 receptor riboprobe indicated that the highest levels of AT1 mRNA were in the outer medullary vasa recta and cortical glomeruli with additional diffuse labeling of the cortex and outer medulla, consistent with labeling of tubular elements. In contrast, in situ hybridization with the AT1 subtype selective probes revealed that AT1A receptor mRNA was primarily localized to the vasa recta and diffusely to the outer stripe of the outer medulla and the renal cortex.(ABSTRACT TRUNCATED AT 250 WORDS)


Heart ◽  
2010 ◽  
Vol 96 (Suppl 3) ◽  
pp. A31-A31
Author(s):  
Z. Kai ◽  
H. Buaijiaer ◽  
Y. Binbin ◽  
Z. Zhengang

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyu Gu ◽  
Tingting Fang ◽  
Pinfang Kang ◽  
Junfeng Hu ◽  
Ying Yu ◽  
...  

Our study aimed firstly to observe whether ALDH2 was expressed in neonate rat cardiac fibroblasts, then to investigate the effect of activation of ALDH2 on oxidative stress, apoptosis, and fibrosis when cardiac fibroblasts were subjected to high glucose intervention. Cultured cardiac fibroblasts were randomly divided into normal (NG), NG + Alda-1, high glucose (HG), HG + Alda-1, HG + Alda-1 + daidzin, HG + daidzin, and hypertonic groups. Double-label immunofluorescence staining, RT-PCR, and Western blot revealed ALDH2 was expressed in cardiac fibroblasts. Compared with NG, ALDH2 activity and protein expression were reduced, and cardiac fibroblast proliferation, ROS releasing, 4-HNE protein expression, collagen type I and III at mRNA levels, and the apoptosis rate were increased in HG group. While in HG + Alda-1 group, with the increases of ALDH2 activity and protein expression, the cardiac fibroblast proliferation and ROS releasing were decreased, and 4-HNE protein expression, collagen type I and III at mRNA levels, and apoptosis rate were reduced compared with HG group. When treated with daidzin in HG + Alda-1 group, the protective effects were inhibited. Our findings suggested that ALDH2 is expressed in neonate rat cardiac fibroblasts; activation of ALDH2 decreases the HG-induced apoptosis and fibrosis through inhibition of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document