scholarly journals Heat shock protein 90 inhibition by 17-DMAG attenuates abdominal aortic aneurysm formation in mice

2015 ◽  
Vol 308 (8) ◽  
pp. H841-H852 ◽  
Author(s):  
Jia Qi ◽  
Ping Yang ◽  
Bing Yi ◽  
Yan Huo ◽  
Ming Chen ◽  
...  

Abdominal aortic aneurysm (AAA) is a common degenerative vascular disease whose pathogenesis is associated with activation of multiple signaling pathways including Jun NH2-terminal kinases (JNK) and NF-κB. It is now well recognized that these pathways are chaperoned by the heat shock protein 90 (Hsp90), suggesting that inhibition of Hsp90 may be a novel strategy for inhibiting AAAs. The aim of this study is to investigate whether inhibition of Hsp90 by 17-DMAG (17-dimethyl-aminothylamino-17-demethoxy-geldanamycin) attenuates ANG II-induced AAA formation in mice, and, if so, to elucidate the mechanisms involved. Apolipoprotein E-null mice were infused with ANG II to induce AAA formation and simultaneously treated by intraperitoneal injection with either vehicle or 17-DMAG for 4 wk. ANG II infusion induced AAA formation in 80% of mice, which was accompanied by increased matrix metalloproteinase (MMP) activity, enhanced tissue inflammation, oxidative stress, and neovascularization. Importantly, these effects were inhibited by 17-DMAG treatment. Mechanistically, we showed that 17-DMAG prevented the formation and progression of AAA through its inhibitory effects on diverse biological pathways including 1) by blocking ANG II-induced phosphorylation of ERK1/2 and JNK that are critically involved in the regulation of MMPs in vascular smooth muscle cells, 2) by inhibiting IκB kinase expression and expression of MCP-1, and 3) by attenuating ANG II-stimulated angiogenic processes critical to AAA formation. Our results demonstrate that inhibition of Hsp90 by 17-DMAG effectively attenuates ANG II-induced AAA formation by simultaneously inhibiting vascular inflammation, extracellular matrix degradation, and angiogenesis, which are critical in the formation and progression of AAAs.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hao Chai ◽  
ZhongHao Tao ◽  
YongChao Qi ◽  
HaoYu Qi ◽  
Wen Chen ◽  
...  

Abdominal aortic aneurysm (AAA) is a vascular disorder that is considered a chronic inflammatory disease. However, the precise molecular mechanisms involved in AAA have not been fully elucidated. Recently, significant progress has been made in understanding the function and mechanism of action of inhibitor of kappa B kinase epsilon (IKKε) in inflammatory and metabolic diseases. The angiotensin II- (Ang II-) induced or pharmacological inhibitors were established to test the effects of IKKε on AAA in vivo. After mice were continuously stimulated with Ang II for 28 days, morphologically, we found that knockout of IKKε reduced AAA formation and drastically reduced maximal diameter and severity. We also observed a decrease in elastin degradation and medial destruction, which were independent of systolic blood pressure or plasma cholesterol concentrations. Western blot analyses and immunohistochemical staining were carried out to measure IKKε expression in AAA tissues and cell lines. AAA phenotype of mice was measured by ultrasound and biochemical indexes. In zymography, immunohistology staining, immunofluorescence staining, and reactive oxygen species (ROS) analysis, TUNEL assay was used to examine the effects of IKKε on AAA progression in AAA mice. IKKε deficiency significantly inhibited inflammatory macrophage infiltration, matrix metalloproteinase (MMP) activity, ROS production, and vascular smooth muscle cell (VSMC) apoptosis. We used primary mouse aortic VSMC isolated from apolipoprotein E (Apoe) −/− and Apoe−/−IKKε−/− mice. Mechanistically, IKKε deficiency blunted the activation of the ERK1/2 pathway. The IKKε inhibitor, amlexanox, has the same impact in AAA. Our results demonstrate a critical role of IKKε in AAA formation induced by Ang II in Apoe−/− mice. Targeting IKKε may constitute a novel therapeutic strategy to prevent AAA progression.


2020 ◽  
Vol 40 (6) ◽  
pp. 1559-1573
Author(s):  
Taro Hiromi ◽  
Utako Yokoyama ◽  
Daisuke Kurotaki ◽  
Al Mamun ◽  
Ryo Ishiwata ◽  
...  

Objective: Excessive prostaglandin E 2 production is a hallmark of abdominal aortic aneurysm (AAA). Enhanced expression of prostaglandin E 2 receptor EP4 (prostaglandin E receptor 4) in vascular smooth muscle cells (VSMCs) has been demonstrated in human AAAs. Although moderate expression of EP4 contributes to vascular homeostasis, the roles of excessive EP4 in vascular pathology remain uncertain. We aimed to investigate whether EP4 overexpression in VSMCs exacerbates AAAs. Approach and Results: We constructed mice with EP4 overexpressed selectively in VSMCs under an SM22α promoter (EP4-Tg). Most EP4-Tg mice died within 2 weeks of Ang II (angiotensin II) infusion due to AAA, while nontransgenic mice given Ang II displayed no overt phenotype. EP4-Tg developed much larger AAAs than nontransgenic mice after periaortic CaCl 2 application. In contrast, EP4 fl/+ ;SM22-Cre;ApoE −/ − and EP4 fl/+ ;SM22-Cre mice, which are EP4 heterozygous knockout in VSMCs, rarely exhibited AAA after Ang II or CaCl 2 treatment, respectively. In Ang II–infused EP4-Tg aorta, Ly6C hi inflammatory monocyte/macrophage infiltration and MMP-9 (matrix metalloprotease-9) activation were enhanced. An unbiased analysis revealed that EP4 stimulation positively regulated the genes binding cytokine receptors in VSMCs, in which IL (interleukin)-6 was the most strongly upregulated. In VSMCs of EP4-Tg and human AAAs, EP4 stimulation caused marked IL-6 production via TAK1 (transforming growth factor-β–activated kinase 1), NF-κB (nuclear factor-kappa B), JNK (c-Jun N-terminal kinase), and p38. Inhibition of IL-6 prevented Ang II–induced AAA formation in EP4-Tg. In addition, EP4 stimulation decreased elastin/collagen cross-linking protein LOX (lysyl oxidase) in both human and mouse VSMCs. Conclusions: Dysregulated EP4 overexpression in VSMCs promotes inflammatory monocyte/macrophage infiltration and attenuates elastin/collagen fiber formation, leading to AAA exacerbation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dilyana B. Mangarova ◽  
Julia Brangsch ◽  
Azadeh Mohtashamdolatshahi ◽  
Olaf Kosch ◽  
Hendrik Paysen ◽  
...  

2020 ◽  
Vol 52 (9) ◽  
pp. 1587-1601
Author(s):  
Se-Jin Jeong ◽  
Min Ji Cho ◽  
Na Young Ko ◽  
Sinai Kim ◽  
In-Hyuk Jung ◽  
...  

Abstract Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II). Prdx2−/− mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas from Prdx2−/− mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA.


2019 ◽  
Vol 116 (26) ◽  
pp. 13006-13015 ◽  
Author(s):  
Wang Wang ◽  
Mengcheng Shen ◽  
Conrad Fischer ◽  
Ratnadeep Basu ◽  
Saugata Hazra ◽  
...  

Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress inApln−/yaorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater inApln−/ymice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture inApln−/ymice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) inLdlr−/−mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.


2011 ◽  
Vol 43 (17) ◽  
pp. 993-1003 ◽  
Author(s):  
Joshua M. Spin ◽  
Mark Hsu ◽  
Junya Azuma ◽  
Maureen M. Tedesco ◽  
Alicia Deng ◽  
...  

We sought to characterize temporal gene expression changes in the murine angiotensin II (ANG II)-ApoE−/− model of abdominal aortic aneurysm (AAA). Aortic ultrasound measurements were obtained over the 28-day time-course. Harvested suprarenal aortic segments were evaluated with whole genome expression profiling at 7, 14, and 28 days using the Agilent Whole Mouse Genome microarray platform and Statistical Analysis of Microarrays at a false discovery rate of <1%. A group of angiotensin-treated mice experienced contained rupture (CR) within 7 days and were analyzed separately. Progressive aortic dilatation occurred throughout the treatment period. However, the numerous early expression differences between ANG II-treated and control were not sustained over time. Ontologic analysis revealed widespread upregulation of inflammatory, immune, and matrix remodeling genes with ANG II treatment, among other pathways such as apoptosis, cell cycling, angiogenesis, and p53 signaling. CR aneurysms displayed significant decreases in TGF-β/BMP-pathway signaling, MAPK signaling, and ErbB signaling genes vs. non-CR/ANG II-treated samples. We also performed literature-based network analysis, extracting numerous highly interconnected genes associated with aneurysm development such as Spp1, Myd88, Adam17 and Lox. 1) ANG II treatment induces extensive early differential expression changes involving abundant signaling pathways in the suprarenal abdominal aorta, particularly wide-ranging increases in inflammatory genes with aneurysm development. 2) These gene expression changes appear to dissipate with time despite continued growth, suggesting that early changes in gene expression influence disease progression in this AAA model, and that the aortic tissue adapts to prolonged ANG II infusion. 3) Network analysis identified nexus genes that may constitute aneurysm biomarkers or therapeutic targets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bolun Li ◽  
Xiaomin Song ◽  
Wenjun Guo ◽  
Yangfeng Hou ◽  
Huiyuan Hu ◽  
...  

Abdominal aortic aneurysm (AAA) is potentially life-threatening in aging population due to the risk of aortic rupture and a lack of optimal treatment. The roles of different vascular and immune cells in AAA formation and pathogenesis remain to be future characterized. Single-cell RNA sequencing was performed on an angiotensin (Ang) II-induced mouse model of AAA. Macrophages, B cells, T cells, fibroblasts, smooth muscle cells and endothelial cells were identified through bioinformatic analyses. The discovery of multiple subtypes of macrophages, such as the re-polarization of Trem2+Acp5+ osteoclast-like and M2-like macrophages toward the M1 type macrophages, indicates the heterogenous nature of macrophages during AAA development. More interestingly, we defined CD45+COL1+ fibrocytes, which was further validated by flow cytometry and immunostaining in mouse and human AAA tissues. We then reconstituted these fibrocytes into mice with Ang II-induced AAA and found the recruitment of these fibrocytes in mouse AAA. More importantly, the fibrocyte treatment exhibited a protective effect against AAA development, perhaps through modulating extracellular matrix production and thus enhancing aortic stability. Our study reveals the heterogeneity of macrophages and the involvement of a novel cell type, fibrocyte, in AAA. Fibrocyte may represent a potential cell therapy target for AAA.


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Ming Xue ◽  
Gang Li ◽  
Dan Li ◽  
Zhu Wang ◽  
Lei Mi ◽  
...  

Abstract Abdominal aortic aneurysm (AAA) is often clinically silent before rupture characterized by extensive vascular inflammation and degenerative elasticity of aortic wall. Monocyte chemotactic protein-induced protein-1 (MCPIP1) exhibits anti-infllammatory and pro-apoptotic effects involved in atherogenesis. However, little is known about the expression and the contribution of MCPIP1 in AAA. In the present study, we collected clinical AAA specimens and constructed AAA mice model through Ang-II infusion, and found apparently increased MCPIP1 expression and severe inflammatory infiltration in AAA aortic membrane as evidenced by elevated levels of monocyte chemotactic protein 1 (MCP-1), interleukin 1 β (IL-1β) and NF-κB, as well as HE staining. The elasticity of aortic tunica media was impaired along with multiple apoptosis of vascular smooth muscle cells (VSMCs) in Ang-II-induced aneurysmal mouse. In vitro Ang-II administration of VSMCs induced MCPIP1 expression, accompanied by up-regulation of matrix metalloproteinase (MMP) 2 (MMP-2) and MMP-9, as well as enhancement of VSMCs proliferation and apoptosis, which may cause damage of intima–media elasticity. Silencing MCPIP1 reversed above effects to further restore the balance of proliferation and apoptosis in VSMCs. Overall, our data indicated that up-regulation of MCPIP1 may become a promising candidate for the diagnosis of AAA, and specific knockdown of MCPIP1 in VSMCs could inhibit VSMCs apoptosis and down-regulate MMPs to maintain vascular wall elasticity. Therefore, knockdown of MCPIP1 may serve as a potential target for gene therapy of AAA.


Sign in / Sign up

Export Citation Format

Share Document