Effect of maturational changes in myosin content and morphometry on airway smooth muscle contraction

1991 ◽  
Vol 260 (6) ◽  
pp. L471-L480 ◽  
Author(s):  
T. M. Murphy ◽  
R. W. Mitchell ◽  
A. Halayko ◽  
J. Roach ◽  
L. Roy ◽  
...  

We studied the relationship of airway morphometry, the content of myosin heavy-chain and isoform stoichiometry, and the distribution of bronchoconstrictor responses in the airways of maturing swine. Lungs were excised in 2-wk-old farm swine (2ws; n = 13) and 10-wk-old swine (10ws; n = 13), and tracheal smooth muscle strips and bronchial rings from generations 2–5 were fixed for in vitro isometric measurement of force generation. Split samples were placed in formaldehyde solution or glutaraldehyde for light- or electron-microscopic morphometry or frozen for analysis of tissue myosin content. The rank order of force generation elicited by both receptor- and nonreceptor-dependent mechanisms for both 2ws and 10ws was generation 4 greater than 3 greater than or equal to 2. For all matched airway generations, contractile force was 257#x2013;100% greater in 2ws than 10ws. Differences in force generation were not related to morphometric differences in smooth muscle mass content among airways. The relative cross-sectional area of smooth muscle derived by computerized morphometry was 5.5–7% for each airway generation and did not change with age. Electron-microscopic morphometry demonstrated comparable myocyte content within muscle bundles for all airways in both age groups. In generation 4 airways, myocyte size in 2ws (27.3 +/- 0.8 nuclei/2,500 microns2) hypertrophied approximately 15% in 10ws (20.4 +/- 0.6 nuclei/2,500 microns2; P less than 0.01). Tissue content of myosin measured by computerized laser densitometry of gel electrophoresis of homogenates was greater in trachea from 2ws than 10ws (135 +/- 10 vs. 90 +/- 4 micrograms/g tissue; P less than 0.01); homology of 200- and 205-kDa isoforms was confirmed by Western blot against polyclonal myosin antibody and Cleveland digest analysis of each band. Differences in contractile forces between generations in 2ws and 10ws were not correlated to functional myosin isoform content. We demonstrate a maturational downregulation of contractile forces in maturing swine. This response is independent of smooth muscle receptor distribution and is not related to morphological changes in airways muscle mass, cellularity, changes in content of nonmyocyte tissues, or tissue content of functional myosin isoform.

1999 ◽  
Vol 81 (05) ◽  
pp. 799-807 ◽  
Author(s):  
F. Lupu ◽  
L. Moons ◽  
P. Carmeliet ◽  
D. Goulding ◽  
D. Collen ◽  
...  

SummaryTemporal and topographic expression of matrix metalloproteinases (MMPs) after perivascular electric injury was studied in wild-type (WT) and urokinase-deficient (u-PA-/-) mice. Neointima formation after injury of the femoral artery was significantly reduced in u-PA-/- mice as compared to WT mice (area of 0.002 ± 0.0007 mm2 versus 0.008 ± 0.002 mm2 at 3 weeks after injury; p <0.001), associated with impaired cellular migration (nuclear cell counts of 44 ± 5 versus 82 ± 9 in cross-sectional areas; p <0.001).Zymographic and/or microscopic analysis indicated that MMP expression gradually increased to reach a maximum at 1 to 2 weeks after vascular injury. In general, MMP levels were lower in u-PA-/- than in WT mice. In non-injured arteries, MMP-2 (gelatinase A) and MMP-3 (stromelysin-1) were produced mainly by adventitial fibroblasts and/or non-contractile smooth muscle cells (SMC). One week after injury, MMP-2 and MMP-3 levels were enhanced due to an increased number and size of producing cells; 2 to 3 weeks after injury, MMP-2 and MMP-3 were produced also by some contractile SMC, which stained with α-actin antiserum. MMP-9 (gelatinase B), MMP-12 (metalloelastase) and MMP-13 (collagenase-3) were found in macrophages located mainly in the adventitia. Immunogold electron microscopic examination revealed that MMP-2 was located predominantly in association with the cell surface of fibroblasts or SMC, while MMP-9 and MMP-12 were located in well defined storage granules within macrophages. MMP-2, MMP-3 and MMP-13, but not MMP-9 or MMP-12, were also found extracellularly, associated with elastin-containing structures (MMP-2), with the basement membrane and occasionally with collagen fibres (MMP-3), or with proteoglycans, collagen and elastin (MMP-13).The temporal and topographic expression pattern of MMPs after vascular injury, coinciding with smooth muscle cell migration and neointima formation, thus is compatible with a role in vascular remodeling.


1994 ◽  
Vol 77 (1) ◽  
pp. 406-414 ◽  
Author(s):  
S. L. Griffith ◽  
R. A. Rhoades ◽  
C. S. Packer

The highly compliant low-resistance pulmonary vasculature is markedly altered with chronic hypoxia. Remodeling in response to hypoxia and/or hypertension involves hypertrophy and hyperplasia of smooth muscle and excessive deposition of connective tissue that likely contributes to the maintenance or exasperates the already elevated pulmonary arterial (PA) pressure. The purpose of this study was to investigate the effect of chronic hypoxia on the contractile properties of PA smooth muscle. Isometric and isotonic experiments were performed on excised PA rings from pulmonary hypertensive (induced by 14 days of hypoxia) Sprague-Dawley rats. A doubling of the vessel wall thickness occurred during the development of hypoxia-induced pulmonary hypertension. Functionally, there was a decrease in isometric stress (force to cross-sectional area ratio). No difference was detected in the velocity of shortening or in total shortening ability. This study provides evidence that, in addition to the morphological changes, changes in PA smooth muscle contractility also appear to play a role in the development and/or maintenance of hypoxia-induced pulmonary hypertension.


1992 ◽  
Vol 70 (4) ◽  
pp. 590-596 ◽  
Author(s):  
John T. Fisher

It is clear from the literature that considerable postnatal development occurs in the contractile properties of skeletal and cardiac muscle. Nevertheless, few studies have focused on developmental changes in airway smooth muscle or on the functional capabilities of airway innervation in the newborn. Conclusions about force generation, based on measurements of pulmonary mechanics during stimulation of the vagus nerves, suggest that the newborn possesses a reduced capability to narrow airway diameter relative to the adult. This reduced in vivo response is accompanied by a reduction in maximal force generating capabilities when compared on the basis of force per unit tissue cross-sectional area (stress) in vitro. However, studies of porcine airways suggest that such a finding may simply reflect a reduction in the relative amount of contractile protein (myosin heavy chain) as seen in fetal or preterm smooth muscle. Thus, comparisons based on force normalized per cross-sectional area of myosin alter conclusions from one in which fetal tracheal smooth muscle generates less maximal force than the adult, to one in which the fetal trachea has greater contractile capabilities. Interestingly, comparisons of maximal isometric force in bronchial smooth muscle between different age groups remain unaffected when myosin heavy chain normalization is applied. Finally, there appears to be an age at which maximal force is significantly greater than at any other age, independent of the amount of smooth muscle (determined morphologically), smooth muscle myosin content, or myosin isoform. Whether this enhanced in vitro response is reflected in vivo, or is counteracted by other physiological mechanisms, remains to be seen.Key words: development, airway smooth muscle, lung resistance, force generation, normalization, myosin.


2021 ◽  
Author(s):  
Sultan Ahmed ◽  
Robert T Johnson ◽  
Reesha Solanki ◽  
Teclino Afewerki ◽  
Finn Wostear ◽  
...  

Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aortic wall and normally exist in a quiescent, contractile phenotype where actomyosin-derived contractile forces maintain vascular tone. However, VSMCs are not terminally differentiated and can dedifferentiate into a proliferative, synthetic phenotype. Actomyosin force generation is essential for the function of both phenotypes. Whilst much is already known about the mechanisms of VSMC actomyosin force generation, existing assays are either low throughput and time consuming, or qualitative and inconsistent. In this study, we use polyacrylamide hydrogels, tuned to mimic the physiological stiffness of the aortic wall, in a VSMC contractility assay. Isolated VSMC area decreases following stimulation with the contractile agonists angiotensin II or carbachol. Importantly, the angiotensin II induced reduction in cell area correlated with increased traction stress generation. Inhibition of actomyosin activity using blebbistatin or Y 27632 prevented angiotensin II mediated changes in VSMC morphology, suggesting that changes in VSMC morphology and actomyosin activity are core components of the contractile response. Furthermore, we show that microtubule stability is an essential regulator of isolated VSMC contractility. Treatment with either colchicine or paclitaxel uncoupled the morphological and/or traction stress responses of angiotensin II stimulated VSMCs. Our findings support the tensegrity model and we demonstrate that microtubules act to balance the actomyosin-derived traction stress generation and regulate the morphological responses of VSMCs.


1990 ◽  
Vol 69 (1) ◽  
pp. 7-13 ◽  
Author(s):  
C. G. Murlas ◽  
T. P. Murphy ◽  
V. Chodimella

We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.


1996 ◽  
Vol 80 (1) ◽  
pp. 261-270 ◽  
Author(s):  
M. D. Delp ◽  
C. Duan

A population of muscle fibers containing a myosin heavy-chain isoform IId (or 2x) has recently been identified in rat muscle. The purpose of this study was to histochemically determine the relative population and size of muscle fibers composed of type IID/X fibers as well as type I, IIA, and IIB fibers to estimate the absolute mass of the different types of fibers in rat muscle. In addition, muscle citrate synthase activity was measured to determine the relationship between fiber composition and muscle oxidative capacity. Seventy-six muscles or muscle parts from the face, neck, shoulder, arm, trunk, hip, thigh, and leg of three adult (4.5-5 mo of age) male Sprague-Dawley rats were removed, weighed, and frozen for histochemical and biochemical analyses. The data demonstrated that type IIB fibers make up 71% of the total muscle mass, type IID/X fibers 18%, type IIA fibers 5%, and type I fibers 6%. The mean cross-sectional area across all muscles was 5,078 +/- 175 microns 2 for type IIB fibers, 3,078 +/- 105 microns2 for type IID/X fibers, 2,045 +/- 80 microns2 for type IIA fibers, and 1,898 +/- 90 microns2 for type I fibers. Citrate synthase activity, an indicator of muscle mitochondrial content, was most closely related to the population of type IIA fibers and was in the rank order of type IIA = I = IID/X = IIB. NADH-tetrazolium reductase staining intensity also confirmed this order. These data demonstrate that type IID/X fibers make up a significant portion of the adult rat muscle mass and are intermediate to type IIA and IIB fibers in regard to fiber size and oxidative potential.


Author(s):  
Martin Hagopian ◽  
Michael D. Gershon ◽  
Eladio A. Nunez

The ability of cardiac tissues to take up norepinephrine from an external medium is well known. Two mechanisms, called Uptake and Uptake respectively by Iversen have been differentiated. Uptake is a high affinity system associated with adrenergic neuronal elements. Uptake is a low affinity system, with a higher maximum rate than that of Uptake. Uptake has been associated with extraneuronal tissues such as cardiac muscle, fibroblasts or vascular smooth muscle. At low perfusion concentrations of norepinephrine most of the amine taken up by Uptake is metabolized. In order to study the localization of sites of norepinephrine storage following its uptake in the active bat heart, tritiated norepinephrine (2.5 mCi; 0.064 mg) was given intravenously to 2 bats. Monoamine oxidase had been inhibited with pheniprazine (10 mg/kg) one hour previously to decrease metabolism of norepinephrine.


Author(s):  
N. Kohyama ◽  
K. Fukushima ◽  
A. Fukami

Since the interlayer or adsorbed water of some clay minerals are quite easily dehydrated in dried air, in vacuum, or at moderate temperatures even in the atmosphere, the hydrated forms have not been observed by a conventional electron microscope(TEM). Recently, specific specimen chambers, “environmental cells(E.C.),” have been developed and confirmed to be effective for electron microscopic observation of wet specimen without dehydration. we observed hydrated forms of some clay minerals and their morphological changes by dehydration using a TEM equipped with an E.C..The E.C., equipped with a single hole copper-microgrid sealed by thin carbon-film, attaches to a TEM(JEM 7A) with an accelerating voltage 100KV and both gas pressure (from 760 Torr to vacuum) and relative humidity can be controlled. The samples collected from various localities in Japan were; tubular halloysite (l0Å) from Gumma Prefecture, sperical halloysite (l0Å) from Tochigi Pref., and intermediate halloysite containing both tubular and spherical types from Fukushima Pref..


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


Sign in / Sign up

Export Citation Format

Share Document