Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period

Author(s):  
Huixin Zheng ◽  
Claire E. Badenhorst ◽  
Tze-Huan Lei ◽  
Yi-Hung Liao ◽  
Ahmad Munir Che Muhamed ◽  
...  

The current study investigated whether ambient heat augments the inflammatory and post-exercise hepcidin response in women, and if menstrual phase and/or self-pacing modulate these physiological effects. Eight trained females (age: 37±7 y; VO2max: 46±7 mL∙kg-1∙min-1; peak power output: 4.5±0.8 W∙kg-1) underwent 20 min of fixed-intensity cycling (100 and 125 W) followed by a 30-min work trial (≈75% VO2max) in a moderate (MOD: 20±1 °C, 53±8% relative humidity) and warm-humid (WARM: 32±0 °C, 75±3% relative humidity) environment in both their early follicular (days 5±2) and mid-luteal (days 21±3) phases. Mean power output was 5±4 W higher in MOD than in WARM (p=0.02) such that the difference in core temperature rise was limited between environments (-0.29±0.18 °C in MOD, p<0.01). IL-6 and hepcidin both increased post-exercise (198% and 38%, respectively), however, neither were affected by ambient temperature or menstrual phase (all p>0.15). Multiple regression analysis demonstrated that the IL-6 response to exercise was explained by leukocyte and platelet count (r2=0.72, p<0.01) and the hepcidin response to exercise was explained by serum iron and ferritin (r2=0.62, p<0.01). During exercise participants almost matched their fluid loss (0.48±0.18 kg·h-1) with water intake (0.35±0.15 L·h-1) such that changes in body mass (-0.3±0.3%) and serum osmolality (0.5±2.0 mOsm·kg-1) were minimal or negligible, indicating a behavioral fluid-regulatory response. These results indicate that trained, iron sufficient women suffer no detriment to their iron regulation in response to exercise with acute ambient heat stress or between menstrual phases on account of a performance-physiological trade-off.

2019 ◽  
Vol 44 (10) ◽  
pp. 1043-1051
Author(s):  
Margaret C. Morrissey ◽  
Jacob N. Kisiolek ◽  
Tristan J. Ragland ◽  
Brandon D. Willingham ◽  
Rachael L. Hunt ◽  
...  

The aim of this study was to evaluate the effect of cold ambient temperature on lactate kinetics with and without a preceding warm-up in female cyclists/triathletes. Seven female cyclists/triathletes participated in this study. The randomized, crossover study included 3 experimental visits that comprised the following conditions: (i) thermoneutral temperature (20 °C; NEU); (ii) cold temperature (0 °C) with no active warm-up (CNWU); and (iii) cold temperature (0 °C) with 25-min active warm-up (CWU). During each condition, participants performed a lactate threshold (LT) test followed by a time to exhaustion trial at 120% of the participant’s peak power output (PPO) as determined during prior peak oxygen consumption testing. Power output at LT with CNWU was 10.2% ± 2.6% greater than with NEU, and the effect was considered very likely small (effect size (ES) = 0.59, 95%–99% likelihood). Power output at LT with CNWU was 4.2% ± 5.4% greater than with CWU; however, the effect was likely trivial (ES = 0.25, 75%–95% likelihood). At LT, there were no significant differences between interventions groups in oxygen consumption, blood lactate concentration, heart rate, or rating of perceived exertion. Time to exhaustion at 120% at PPO was 11% longer with CNWU than with CWU (ES = 0.62, respectively), and this effect was likely small. These findings suggest that power output at LT was higher in CNWU compared with NEU. Additionally, time to exhaustion at 120% of PPO was higher in CNWU compared with CWU and no different than NEU; these differences likely result in a small improvement in performance with CNWU versus CWU and NEU.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 164 ◽  
Author(s):  
Camila Sakaguchi ◽  
David Nieman ◽  
Etore Signini ◽  
Raphael Abreu ◽  
Aparecida Catai

This systematic review provides a qualitative appraisal of 24 high-quality metabolomics-based studies published over the past decade exploring exercise-induced alterations of the human metabolome. Of these papers, 63% focused on acute metabolite changes following intense and prolonged exercise. The best studies utilized liquid chromatography mass spectrometry (LC-MS/MS) analytical platforms with large chemical standard libraries and strong, multivariate bioinformatics support. These studies reported large-fold changes in diverse lipid-related metabolites, with more than 100 increasing two-fold or greater within a few hours post-exercise. Metabolite shifts, even after strenuous exercise, typically return to near pre-exercise levels after one day of recovery. Few studies investigated metabolite changes following acute exercise bouts of shorter durations (< 60 min) and workload volumes. Plasma metabolite shifts in these types of studies are modest in comparison. More cross-sectional and exercise training studies are needed to improve scientific understanding of the human system’s response to varying, chronic exercise workloads. The findings derived from this review provide direction for future investigations focused on the body’s metabolome response to exercise.


1983 ◽  
Vol 49 (01) ◽  
pp. 053-057 ◽  
Author(s):  
Robert G Kopitsky ◽  
Mary Ellen P Switzer ◽  
R Sanders Williams ◽  
Patrick A McKee

SummaryWe studied the effect of acute exercise on the ability of thrombin to activate plasma factor VIII (FVIII) activity in 20 healthy males. The subject showed an average exercise-related increase in FVIII activity of 54.5±8.2% over pre-exercise FVIII activity (p<0.001). When exposed to the same concentration of thrombin, post-exercise FVIII activity showed greater enhancement than pre-exercise FVIII activity: 157.1±12.8% increase in activity versus 117.3±9.9%, respectively (p<0.01). The degree of the potentiated thrombin effect in post-exercise samples relative to pre-exercise samples was linearly correlated with the degree of the exercise-related increase in FVIII activity. Taken together with our previous observations that the extent of thrombin enhancement of FVIII activity varies inversely with the mole ratio of FVIII/von Willebrand factor subunits to thrombin, these findings imply that release of FVIII does not occur during exercise, and that the exercise-related increase in FVIII activity results primarily, if not completely, from activation of already circulating but inactive FVIII.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2019 ◽  
Author(s):  
James Graeme Wrightson ◽  
Louis Passfield

Objectives: To examine the effect of exercise at and slightly above the maximal lactate steady state (MLSS) on self-efficacy, affect and effort, and their associations with exercise tolerance.Design: Counterbalanced, repeated measures designMethod: Participants performed two 30‐minute constant‐load cycling exercise at a power output equal to that at MLSS and 10 W above MLSS, immediately followed by a time‐to‐exhaustion test at 80% of their peak power output. Self-efficacy, affect and effort were measured before and after 30 minutes of cycling at and above MLSS.Results: Negative affect and effort higher, and self-efficacy and time to exhaustion were reduced, following cycling at MLSS + 10 W compared to cycling at the MLSS. Following exercise at the MLSS self-efficacy, affect and effort were all associated with subsequent time-to exhaustion. However, following exercise at MLSS + 10 W, only affect was associated with time-to exhaustion. Conclusions: Self efficacy, affect and effort are profoundly affected by physiological state, highlighting the influence of somatic states on perceptions and emotions during exercise. The affective response to exercise appears to be associated with exercise tolerance, indicating that the emotional, as well as physiological, responses should be considered when prescribing exercise training.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuyuki Miyamoto ◽  
Keisuke Suzuki ◽  
Hirokazu Ohtaki ◽  
Motoyasu Nakamura ◽  
Hiroki Yamaga ◽  
...  

Abstract Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 °C, 41 °C, or 43 °C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 °C, 41 °C, and 43 °C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 °C group appeared to be more dehydrated than those in the AT 37 °C group. WBGT in the AT 41 °C group was > 44 °C; core body temperature in this group reached 41.3 ± 0.08 °C during heat exposure and decreased to 34.0 ± 0.18 °C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 °C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.


2004 ◽  
Vol 287 (6) ◽  
pp. E1189-E1194 ◽  
Author(s):  
Christian P. Fischer ◽  
Peter Plomgaard ◽  
Anne K. Hansen ◽  
Henriette Pilegaard ◽  
Bengt Saltin ◽  
...  

Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men ( n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher ( P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold ( P < 0.05) in response to exercise before the training period, but only 8-fold ( P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 ( P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.


1983 ◽  
Vol 55 (1) ◽  
pp. 218-224 ◽  
Author(s):  
N. McCartney ◽  
G. J. Heigenhauser ◽  
N. L. Jones

We studied maximal torque-velocity relationships and fatigue during short-term maximal exercise on a constant velocity cycle ergometer in 13 healthy male subjects. Maximum torque showed an inverse linear relationship to crank velocity between 60 and 160 rpm, and a direct relationship to thigh muscle volume measured by computerized tomography. Peak torque per liter thigh muscle volume (PT, N X ml-1) was related to crank velocity (CV, rpm) in the following equation: PT = 61.7 - 0.234 CV (r = 0.99). Peak power output was a parabolic function of crank velocity in individual subjects, but maximal power output was achieved at varying crank velocities in different subjects. Fiber type distribution was measured in the two subjects showing the greatest differences and demonstrated that a high proportion of type II fibers may be one factor associated with a high crank velocity for maximal power output. The decline in average power during 30 s of maximal effort was least at 60 rpm (23.7 +/- 4.6% of initial maximal power) and greatest at 140 rpm (58.7 +/- 6.5%). At 60 rpm the decline in power over 30 s was inversely related to maximal oxygen uptake (ml X min-1 X kg-1) (r = 0.69). Total work performed and plasma lactate concentration 3 min after completion of 30-s maximum effort were similar for each crank velocity.


Sign in / Sign up

Export Citation Format

Share Document