scholarly journals Nutraceuticals as a potential adjunct therapy toward improving vascular health in CKD

2019 ◽  
Vol 317 (5) ◽  
pp. R719-R732 ◽  
Author(s):  
Nicholas T. Kruse

Chronic kidney disease (CKD) is a major public health epidemic and increases risk for developing cardiovascular disease (CVD). Vascular dysfunction is a major independent risk factor toward increased risk for CVD in CKD. Several mechanisms have been postulated to result in vascular dysfunction in CKD, including oxidative stress-mediated inflammation by redox imbalance and reduced nitric oxide (NO) bioavailability and synthesis. Therefore, strategies that decrease oxidative stress and/or increase NO bioactivity may have major clinical implications toward improving vascular health and reducing the burden of CVD in CKD. Nutraceutical therapy in the form of polyphenols, dietary nitrates, or selective mitochondria-targeting therapies has recently been shown to improve vascular function by reducing oxidative stress and/or increasing NO bioavailability and synthesis. This review, therefore, highlights these three emerging nutraceuticals recently implicated in pathophysiological improvement of vascular function in CKD. This review also describes those pathophysiological mechanisms thought to be responsible for the beneficial effects on the vasculature and possible experimental considerations that may exist within human CKD populations. It is clear throughout this review that human-based mechanistic preclinical and health-related clinical studies are lacking regarding whether nutraceuticals do indeed improve vascular function in patients with CKD. As such, a comprehensive, detailed, and fully integrated understanding of nutraceuticals and vasculature function is necessary in patients with CKD. Many opportunities exist for original mechanistic and therapeutic discoveries and investigations on select nutraceuticals and their impact on vascular outcomes in patients with CKD, and these will remain exciting avenues of research in the future.

2021 ◽  
Vol 22 (3) ◽  
pp. 1296
Author(s):  
Yue Ruan ◽  
Subao Jiang ◽  
Adrian Gericke

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


2009 ◽  
Vol 117 (3) ◽  
pp. 129-138 ◽  
Author(s):  
Emily M. Segar ◽  
Andrew W. Norris ◽  
Jian-Rong Yao ◽  
Shanming Hu ◽  
Stacia L. Koppenhafer ◽  
...  

ODM (offspring of diabetic mothers) have an increased risk of developing metabolic and cardiovascular dysfunction; however, few studies have focused on the susceptibility to disease in offspring of mothers developing diabetes during pregnancy. We developed an animal model of late gestation diabetic pregnancy and characterized metabolic and vascular function in the offspring. Diabetes was induced by streptozotocin (50 mg/kg of body weight, intraperitoneally) in pregnant rats on gestational day 13 and was partially controlled by twice-daily injections of insulin. At 2 months of age, ODM had slightly better glucose tolerance than controls (P<0.05); however, by 6 months of age this trend had reversed. A euglycaemic–hyperinsulinamic clamp revealed insulin resistance in male ODM (P<0.05). In 6–8-month-old female ODM, aortas had significantly enhanced contractility in response to KCl, ET-1 (endothelin-1) and NA (noradrenaline). No differences in responses to ET-1 and NA were apparent with co-administration of L-NNA (NG-nitro-L-arginine). Relaxation in response to ACh (acetylcholine), but not SNP (sodium nitroprusside), was significantly impaired in female ODM. In contrast, males had no between-group differences in response to vasoconstrictors, whereas relaxation to SNP and ACh was greater in ODM compared with control animals. Thus the development of diabetes during pregnancy programmes gender-specific insulin resistance and vascular dysfunction in adult offspring.


2017 ◽  
Vol 95 (12) ◽  
pp. 1406-1413 ◽  
Author(s):  
Esra Aycan-Ustyol ◽  
Merve Kabasakal ◽  
Seldag Bekpinar ◽  
F. Ilkay Alp-Yıldırım ◽  
Ozge Tepe ◽  
...  

Increased oxidative stress and disturbance in nitric oxide bioavailability lead to endothelial dysfunction and cardiovascular complication in renal disease. Gentamicin (GM), a commonly used antibiotic, exhibits a toxic effect on renal proximal tubules. Prevention of its nephrotoxicity is important. Therefore, we investigated whether heme oxygenase 1 HO-1) induction influenced kidney and vascular function in GM-administered rats. GM (100 mg·kg–1·day–1; i.p.) was given to rats alone or together with hemin (20 mg·kg–1 on alternate days; i.p.) for 14 days. Plasma and kidney l-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) as well as kidney 4-hydroxynonenal (HNE) levels and myeloperoxidase (MPO) activity were measured. Histopathological examinations of kidney and relaxation and contraction responses of aorta were also examined. GM increased serum SDMA, urea nitrogen (BUN), and creatinine levels and caused histopathological alterations in the kidney. GM elevated HO-1 protein and mRNA expressions, 4-HNE level, and MPO activity and decreased antioxidant enzyme activities and l-arginine levels in the kidney. Decreased relaxation and contraction were detected in the aorta. Hemin restored renal oxidative stress and inflammatory changes together with vascular dysfunction, but did not affect SDMA, BUN, or creatinine levels. We conclude that HO-1 induction may be effective in improving renal oxidative stress, inflammation, and vascular dysfunction mediated by GM.


2019 ◽  
Vol 20 (3) ◽  
pp. 499 ◽  
Author(s):  
Michela Zanetti ◽  
Gianluca Gortan Cappellari ◽  
Andrea Graziani ◽  
Rocco Barazzoni

Unacylated ghrelin (UnGhr) exerts several beneficial actions on vascular function. The aim of this study was to assess the effects of UnGhr on high-fat induced endothelial dysfunction and its underlying mechanisms. Thoracic aortas from transgenic mice, which were overexpressing UnGhr and being control fed either a standard control diet (CD) or a high-fat diet (HFD) for 16 weeks, were harvested and used for the assessment of vascular reactivity, endothelial nitric oxide synthase (eNOS) expression and activity, thiobarbituric acid reactive substances (TBARS) and glutathione levels, and aortic lipid accumulation by Oil Red O staining. Relaxations due to acetylcholine and to DEA-NONOate were reduced (p < 0.05) in the HFD control aortas compared to vessels from the CD animals. Overexpression of UnGhr prevented HFD-induced vascular dysfunction, while eNOS expression and activity were similar in all vessels. HFD-induced vascular oxidative stress was demonstrated by increased (p < 0.05) aortic TBARS and glutathione in wild type (Wt) mice; however, this was not seen in UnGhr mice. Moreover, increased (p < 0.05) HFD-induced lipid accumulation in vessels from Wt mice was prevented by UnGhr overexpression. In conclusion, chronic UnGhr overexpression results in improved vascular function and reduced plaque formation through decreased vascular oxidative stress, without affecting the eNOS pathway. This research may provide new insight into the mechanisms underlying the beneficial effects of UnGhr on the vascular dysfunction associated with obesity and the metabolic syndrome.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 236 ◽  
Author(s):  
Margalida Monserrat-Mesquida ◽  
Magdalena Quetglas-Llabrés ◽  
Xavier Capó ◽  
Cristina Bouzas ◽  
David Mateos ◽  
...  

Metabolic syndrome (MetS) is associated with increased risk of developing diabetes and cardiovascular diseases. MetS is also characterized by an increase of oxidative stress which contributes to impaired inflammation, vascular function, and atherosclerosis. The aim was to assess the oxidative stress and inflammatory markers in plasma and PBMCs in adults with or without MetS. Antioxidant and inflammatory parameters were measured in peripheral blood mononuclear cells (PBMCs) of 80 men and 80 women over 55 to 80-years-old residing in the Balearic Islands without previously documented cardiovascular disease. Circulating leukocytes, neutrophils, lymphocytes, basophils, and monocytes were higher in MetS subjects with respect to those without MetS. Plasma levels of malondialdehyde, tumor necrosis factor α (TNFα), and interleukin 6 (IL-6) levels were higher in MetS subjects in both genders, but the superoxide dismutase activity was lower. The myeloperoxidase plasma activity was higher in the MetS male subjects. Higher activities and protein levels of catalase and glutathione reductase in PBMCs were observed in MetS subjects in both genders. Obtained data show that MetS is associated with oxidative stress and a proinflammatory state and with high antioxidant defenses in PBMCs probably derived from a pre-activation state of immune cells.


2019 ◽  
Vol 39 (7) ◽  
pp. 1099-1108 ◽  
Author(s):  
Rachel M Hillabrand ◽  
Uwe G Hacke ◽  
Victor J Lieffers

AbstractInsect defoliation contributes to tree mortality under drought conditions. Defoliation-induced alterations to the vascular transport structure may increase tree vulnerability to drought; however, this has been rarely studied. To evaluate the response of tree vascular function following defoliation, 2-year-old balsam poplar were manually defoliated, and both physiological and anatomical measurements were made after allowing for re-foliation. Hydraulic conductivity measurements showed that defoliated trees had both increased vulnerability to embolism and decreased water transport efficiency, likely due to misshapen xylem vessels. Anatomical measurements revealed novel insights into defoliation-induced alterations to the phloem. Phloem sieve tube diameter was reduced in the stems of defoliated trees, suggesting reduced transport capability. In addition, phloem fibers were absent, or reduced in number, in stems, shoot tips and petioles of new leaves, potentially reducing the stability of the vascular tissue. Results from this study suggest that the defoliation leads to trees with increased risk for vascular dysfunction and drought-induced mortality through alterations in the vascular structure, and highlights a route through which carbon limitation can influence hydraulic dysfunction.


2004 ◽  
Vol 287 (1) ◽  
pp. H40-H45 ◽  
Author(s):  
Sukrutha Veerareddy ◽  
Christy-Lynn M. Cooke ◽  
Philip N. Baker ◽  
Sandra T. Davidge

Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.


2019 ◽  
Vol 17 (5) ◽  
pp. 465-475 ◽  
Author(s):  
Agnieszka Baranowska-Bik ◽  
Wojciech Bik

: Insulin was discovered in 1922 by Banting and Best. Since that time, extensive research on the mechanisms of insulin activity and action has continued. Currently, it is known that the role of insulin is much greater than simply regulating carbohydrate metabolism. Insulin in physiological concentration is also necessary to maintain normal vascular function. : Insulin resistance is defined as a pathological condition characterized by reduced sensitivity of skeletal muscles, liver, and adipose tissue, to insulin and its downstream metabolic effects under normal serum glucose concentrations. There are also selective forms of insulin resistance with unique features, including vascular insulin resistance. Insulin resistance, both classical and vascular, contributes to vascular impairment resulting in increased risk of cardiovascular disease. Furthermore, in the elderly population, additional factors including redistribution of fat concentrations, low-grade inflammation, and decreased self-repair capacity [or cell senescence] amplify the vascular abnormalities related to insulin resistance.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
M. D. Mauricio ◽  
S. Guerra-Ojeda ◽  
P. Marchio ◽  
S. L. Valles ◽  
M. Aldasoro ◽  
...  

Nanotechnology has had a significant impact on medicine in recent years, its application being referred to as nanomedicine. Nanoparticles have certain properties with biomedical applications; however, in some situations, they have demonstrated cell toxicity, which has caused concern surrounding their clinical use. In this review, we focus on two aspects: first, we summarize the types of nanoparticles according to their chemical composition and the general characteristics of their use in medicine, and second, we review the applications of nanoparticles in vascular alteration, especially in endothelial dysfunction related to oxidative stress. This condition can lead to a reduction in nitric oxide (NO) bioavailability, consequently affecting vascular tone regulation and endothelial dysfunction, which is the first phase in the development of cardiovascular diseases. Therefore, nanoparticles with antioxidant properties may improve vascular dysfunction associated with hypertension, diabetes mellitus, or atherosclerosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Alessandra Magenta ◽  
Simona Greco ◽  
Maurizio C. Capogrossi ◽  
Carlo Gaetano ◽  
Fabio Martelli

Increased oxidative stress and reduced nitric oxide (NO) bioavailability play a causal role in endothelial cell dysfunction occurring in the vasculature of diabetic patients. In this review, we summarized the molecular mechanisms underpinning diabetic endothelial and vascular dysfunction. In particular, we focused our attention on the complex interplay existing among NO, reactive oxygen species (ROS), and one crucial regulator of intracellular ROS production,p66Shcprotein.


Sign in / Sign up

Export Citation Format

Share Document