Amygdaloid lesions impair ingestive responses to 2-deoxy-D-glucose but not insulin

1982 ◽  
Vol 242 (1) ◽  
pp. R129-R135 ◽  
Author(s):  
M. G. Tordoff ◽  
P. J. Geiselman ◽  
C. V. Grijalva ◽  
S. W. Kiefer ◽  
D. Novin

Bilateral lesions of the amygdala in male rats impaired the feeding response to 2-deoxy-D-glucose (2-DG; 100, 200, and 400 mg/kg). During the first 3 h postinjection, control rats displayed a dose-related increase in both food and water consumption. Rats with amygdaloid lesions did not respond to 2-DG until the 3rd h postinjection, when only the two largest doses significantly increased food consumption. Their water intake remained unaffected throughout the 3-h postinjection period. During the 4th-24th h post-2-DG administration, both groups displayed a dose-related suppression of food and water intake. Following insulin (10 U/kg), amygdaloid and control animals were indistinguishable: both groups showed a significant short-term increase in food and water intake followed by a reduction in intakes during the 4th-24th h. Central visceral pathways that are important for the ingestive responses to 2-DG may be interrupted by amygdaloid lesions. However, pathways responsible for the ingestive behavior induced by insulin appear unaffected by damage to the amygdala.

1985 ◽  
Vol 59 (2) ◽  
pp. 408-412 ◽  
Author(s):  
A. R. Gwosdow ◽  
E. L. Besch ◽  
C. L. Chen

The physiological changes in male rats during acclimation were studied following direct or stepwise exposure to heat (32.5 degrees C) in a controlled-environment room. The animals were exposed to each temperature for 10 days beginning at 24.5 degrees C and returning to 24.5 degrees C in the reverse order of initial exposure. Relative humidity of 50 +/- 2% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Physiological changes in metabolic rate (MR), evaporative water loss (EWL), plasma corticosterone, body water turnover, and food and water intake were measured. The results indicate a significantly (P less than 0.001) elevated plasma corticosterone and MR in rats exposed directly to heat from control temperature (24.5 degrees C) but not in those animals exposed stepwise via 29.0 degrees C. All kinetic parameters of water pool changed (P less than 0.01) on direct exposure to heat, whereas rats exposed in a stepwise manner increased only pool turnover. In addition, exposure to experimental temperatures resulted in reduced (P less than 0.05) relative food intake and increased (P less than 0.05) water intake. Compared with the control condition of 24.5 degrees C, EWL was significantly (P less than 0.05) elevated when the animals were exposed either directly or in a stepwise fashion to 32.5 degrees C. These data suggest that the response to elevated temperatures is influenced by the temperature to which the rat is acclimated.


2019 ◽  
Author(s):  
Giorgio Onnis ◽  
Ethel Layco-Bader ◽  
Laurence Tecott

ABSTRACTWe describe a novel quantitative home cage monitoring (HCM) approach for dissecting spontaneous patterns of ingestive and locomotor behaviors into a hierarchically organized series of behavioral facets or endophenotypes. Fine-grained analyses of a large multimodal 16-strain behavioral dataset collected from 169 mice revealed bouts of feeding, drinking and locomotor behaviors occurring within animals’ Active States. We have automated the detection of these bouts and their discrete properties including bout sizes, rates, durations, and intensities. We have developed a hierarchically organized model of behavioral organization enabling analysis of relationships among Active/Inactive State properties and those of feeding, drinking and locomotor bouts. Robust and analogous patterns of interrelationships among these endophenotypes were found for feeding, drinking behaviors, and these differed markedly from those for locomotor behaviors. For feeding and drinking, patterns of reciprocal relationships were observed for pairs of endophenotypes at multiple hierarchical levels. Moreover, endophenotype variability was highest at lowest hierarchical levels progressively diminished at higher levels, so that variability of gross levels of food and water intake were much less than those of their lower level determinants. By contrast, interrelationships among locomotor endophenotypes differed markedly from those of ingestive behavior. Altogether, these findings raise the possibility that behavioral regulation of food and water intake may make an important contribution to the homeostatic maintenance of energy and volume balance.


2008 ◽  
Vol 27 (3_suppl) ◽  
pp. 101-118 ◽  
Author(s):  
Eri Watanabe ◽  
Terutaka Kodama ◽  
Takeshi Masuyama ◽  
Shoji Tsubuku ◽  
Akira Otabe ◽  
...  

Dihydrocapsiate, (4-hydroxy-3-methoxybenzyl 8-methylnonanoate; CAS No. 205687-03-2) is a naturally occurring capsinoid compound found in nonpungent chili peppers. Although the safety of synthetically produced dihydrocapsiate has been previously evaluated, the purpose of this 13-week gavage toxicity study is to evaluate dihydrocapsiate produced with a slightly modified manufacturing process. Sprague-Dawley rats, 10 rats/sex/group, 6 weeks of age at study initiation, were administered the dihydrocapsiate daily by gavage at dose levels of 0 (vehicle), 100,300, or 1000 mg/kg/day. The rats were observed for antimortem and postmortem signs of toxicity, including changes in clinical signs, body weights, food consumption, water intake, ophthalmology, clinical pathology (clinical chemistry, hematology, urinalysis), tissue findings (macroscopic and microscopic examination), as well as organ weights. There were no changes observed in clinical signs, body weight, food consumption, water intake, ophthalmology, urinalysis, hematology, or blood chemistry that were attributable to the administration of dihydrocapsiate. The only change observed attributable to the dihydrocapsiate administration involved the liver and that change occurred only at the high dose (1000 mg/kg). Both sexes had an increase in organ weights, but this increase correlated with a change in histopathology (i.e., hepatocyte hypertrophy) only in the males. No dihydrocapsiate-related histopathological changes were observed in males at doses ≤300 mg/kg or in females at any of the doses tested (≤1000 mg/kg). It was concluded that the no observed adverse effect level (NOAEL) of dihydrocapsiate was 300 mg/kg/day for male rats and 1000 mg/kg/day for female rats in this 13 week gavage study.


2013 ◽  
Vol 38 (7) ◽  
pp. 746-752 ◽  
Author(s):  
Maria Fernanda Nunez ◽  
Rebecca C. Mollard ◽  
Bohdan L. Luhovyy ◽  
Christina L. Wong ◽  
G. Harvey Anderson

Biologia ◽  
2006 ◽  
Vol 61 (3) ◽  
Author(s):  
Monika Kassayová ◽  
Martina Marková ◽  
Bianka Bojková ◽  
Eva Adámeková ◽  
Peter Kubatka ◽  
...  

AbstractThe question of effects of long-term melatonin (MEL) administration have not yet been explained sufficiently, especially its metabolic consequences in young persons and animals. The aim of the present study was to analyze the effects of MEL given during prolonged time (for 3 months) and chronically (for 6 months) at the dose of 4 µg/mL of tap water, on the selected metabolic and hormonal parameters in young female and male Wistar:Han (WH) rats. The weights of selected organs, tissues, body weight gains and food and water intake were registered. Six weeks aged rats were adapted to standard housing conditions and light regimen L:D=12:12 h, fed standard laboratory diet and drank tap water (controls) or MEL solution ad libitum; finally they were sacrificed after overnight fasting. Prolonged MEL administration decreased serum glucose concentration and increased triacylglycerol and malondialdehyde concentration/content in the liver in females. In males MEL increased concentrations of serum phospholipids, corticosterone and liver malondialdehyde. MEL treatment reduced the body weight in both sexes and weight of epididymal fat in males, without any alterations of food and water intake. Chronic MEL administration reduced serum glucose concentration and increased concentration/content of glycogen, triacylglycerol and cholesterol in the liver and glycogen concentration/content in heart muscle in males. In females, the significant rise of serum corticosterone concentration and liver malondialdehyde content was recorded. MEL significantly increased liver weight and decreased thymus weight in males. MEL administration increased temporarily water intake in males, body and epididymal fat weights were similar to that in controls. Body weight of MEL drinking females was reduced in the 1st half of experiment only; the food and water intake did not differ from control group. The response in WH rats on MEL was more prominent as in the Sprague-Dawley strain (our previous studies). Male rats were generally more affected, probably due to higher daily and total consumption of melatonin.


2014 ◽  
Vol 307 (7) ◽  
pp. R793-R801 ◽  
Author(s):  
Hiroshi Karasawa ◽  
Seiichi Yakabi ◽  
Lixin Wang ◽  
Andreas Stengel ◽  
Jean Rivier ◽  
...  

Intracerebroventricular injection of stable somatostatin (SST) agonists stimulates food and water intake in rats. We investigated the receptor subtype(s) involved in the dipsogenic effect of intracerebroventricular injection of SST agonists, mechanisms of action, and role. In nonfasted and non-water-deprived male rats with chronic intracerebroventricular cannula, intake of water without food or food without water was monitored separately to avoid any interactions compared with intracerebroventricular vehicle. SST-14 and cortistatin (CST-14) (1 μg/rat icv) increased water intake by 3.1- and 2.7-fold, respectively, while both peptides did not alter food intake at 1 h postinjection in the light phase. By contrast, the stable pan-somatostatin agonist ODT8-SST (1 μg/rat icv) increased both water and food intake by 4.9- and 3.7-fold, respectively. S-346-011, a selective receptor 2 (sst2) agonist (1 μg/rat icv) induced water ingestion, while sst1 or sst4 agonist, injected under the same conditions, did not. The sst2 antagonist S-406-028 (1 μg/rat icv) prevented the 1-h water intake induced by intracerebroventricular ODT8-SST and CST-14. Losartan (100 μg/rat icv), an angiotensin receptor 1 (AT1) antagonist, completely blocked the water consumption induced by intracerebroventricular ODT8-SST, whereas intracerebroventricular injection of S-406-028 did not modify the intracerebroventricular ANG II-induced dipsogenic response. The sst2 antagonist reduced by 40% the increase of the 3-h water intake in the early dark phase. These data indicate that SST-14 and CST-14 interact with sst2 to exert a potent dipsogenic effect, which is mediated downstream by angiotensin-AT1 signaling. These data also indicate that sst2 activation by brain SST-14 and/or CST-14 may play an important role in the regulation of drinking behavior.


1962 ◽  
Vol 203 (4) ◽  
pp. 631-633 ◽  
Author(s):  
Gerald Friedman ◽  
Jerome D. Waye ◽  
Henry D. Janowitz

After ld50 doses of aurothioglucose (ATG), extensive damage to hypothalamic structures other than those strictly involved in food intake has been demonstrated. The injury to areas previously shown to be concerned with the regulation of water intake prompted an investigation of the daily patterns of food and water intake in mice from the 2nd day after ATG injection for a period of 6 months. During the 1st month after ATG no statistically significant differences were noted in food or water intake or water-to-food ratios among mice destined to become obese, ATG-nonobese mice, or controls. From the 2nd to 6th month statistically significant increases in food and water intake were demonstrated among obese mice compared to ATG-nonobese and control mice. At no time after the injection of ATG was there a demonstrable difference in water-to-food ratios among the three groups. It is concluded that alteration of water intake regulatory mechanisms is not a concomitant of aurothioglucose obesity.


2004 ◽  
Vol 286 (6) ◽  
pp. R1043-R1050 ◽  
Author(s):  
Kathleen S. Curtis ◽  
Eric G. Krause ◽  
Donna L. Wong ◽  
Robert J. Contreras

We examined body fluid regulation by weanling (21–25 days) and adult (>60 days) male rats that were offspring of dams fed chow containing either 0.1, 1, or 3% NaCl throughout gestation and lactation. Weanling rats were maintained on the test diets until postnatal day 30 and on standard 1% NaCl chow thereafter. Ad libitum water intake by weanlings was highest in those fed 3% NaCl and lowest in those fed 0.1% NaCl. Adult rats maintained on standard NaCl chow consumed similar amounts of water after overnight water deprivation or intravenous hypertonic NaCl (HS) infusion regardless of early NaCl condition. Moreover, baseline and HS-stimulated plasma Na+ concentrations also were similar for the three groups. Nonetheless, adult rats in the early 3% NaCl group consumed more of 0.5 M NaCl after 10 days of dietary Na+ deprivation than did rats in either the 1% or 0.1% NaCl group. Interestingly, whether NaCl was consumed in a concentrated solution in short-term, two-bottle tests after dietary Na+ deprivation or in chow during ad libitum feeding, adult rats in the 3% NaCl group drank less water for each unit of NaCl consumed, whereas rats in the 0.1% NaCl group drank more water for each unit of NaCl consumed. Thus gestational and early postnatal dietary NaCl levels do not affect stimulated water intake or long-term body fluid regulation. Together with our previous studies, these results suggest that persistent changes in NaCl intake and in water intake associated with NaCl ingestion reflect short-term behavioral effects that may be attributable to differences in NaCl taste processing.


1967 ◽  
Vol 37 (1) ◽  
pp. 1-8 ◽  
Author(s):  
F. J. IMMS

SUMMARY The effects of four types of stress (daily subcutaneous injection of 0·9 % NaCl solution, a forced choice, water gavage, and surgical trauma) on the growth rate, food and water intake, and water excretion of albino rats have been investigated. These stresses caused a slowing of growth which was apparently not associated with decreased food and water intakes. There were, however, some changes in water excretion which varied with the type of stress. Since food consumption was unchanged during stress whereas the rate of growth decreased it is concluded that the rate of oxidative metabolism was increased.


2010 ◽  
Vol 298 (6) ◽  
pp. R1642-R1647 ◽  
Author(s):  
Gina L. C. Yosten ◽  
Willis K. Samson

Nesfatin-1 is an 82-amino acid protein encoded by the nucleobindin2 gene. When injected intracerebroventricularly, nesfatin-1, via a melanocortin ¾ receptor-dependent mechanism, potently decreased both food and water intakes and elevated mean arterial pressure in a dose-related manner. Because nesfatin-1 colocalized with oxytocin in hypothalamus and because nesfatin-1 had direct depolarizing effects on oxytocin-producing neurons in hypothalamic slice preparations, we hypothesized that the actions of nesfatin-1 required the presence of functional oxytocin receptors. We, therefore, pretreated conscious, unrestrained male rats with the oxytocin receptor antagonist, ornithine vasotocin (OVT), before treatment with nesfatin-1. We found that pretreatment with OVT reversed the effects of nesfatin-1 on both food and water intake and on mean arterial pressure, indicating that the central oxytocin system is a downstream mediator of these actions of nesfatin-1. Additionally, we found that OVT reversed the anorexigenic effect of α-melanocyte-stimulating hormone (α-MSH), suggesting that the central oxytocin system is downstream of the central melanocortin system. Taken together, these data suggest that nesfatin-1 acts through a serial neuronal circuit, in which nesfatin-1 activates the central melanocortin system, which, in turn, acts through the central oxytocin system, leading to an inhibition of food and water intake and an increase in mean arterial pressure.


Sign in / Sign up

Export Citation Format

Share Document