Normal food intake and growth in hyperprolactinemic rats

1991 ◽  
Vol 261 (3) ◽  
pp. R548-R552
Author(s):  
R. A. Adler ◽  
R. J. Krieg

Normal lactation, a state of chronic hyperprolactinemia, is often accompanied by increased food intake. Two recent reports suggested that, in rats, prolactin (PRL) administration or chronic endogenous PRL excess led to increased food intake and growth. Similar methods of achieving augmented circulating levels of PRL in rats have been employed in our laboratory. Rats with extra anterior pituitary (AP) grafts under the kidney capsule have chronically elevated circulating PRL levels. However, in several experiments, weight gain, food intake, and fecal weight were the same in AP-grafted rats and in control muscle-grafted rats. In addition, the AP-grafted rat model was modified to demonstrate that PRL-induced increases in adrenal glucocorticoids and decreases in estrogens did not provoke alterations in eating behavior. Injection of homologous PRL for 8 days did not increase weight gain in normal or hypophysectomized rats. These data suggest that neither the chronic PRL excess caused by AP grafts nor the acute PRL excess caused by rat PRL injections increases food intake or weight gain.

2020 ◽  
Vol 150 (7) ◽  
pp. 1818-1823
Author(s):  
Cassondra J Saande ◽  
Amanda E Bries ◽  
Samantha K Pritchard ◽  
Caitlyn A Nass ◽  
Carter H Reed ◽  
...  

ABSTRACT Background Whole egg (WE) consumption has been demonstrated to attenuate body weight (BW) gain and adiposity in genetic animal models of type 2 diabetes (T2D). This finding was accompanied by increased food consumption. Objectives This study aimed to examine the effects of long-term WE intake on BW gain, fat distribution, and food intake in a rat model of diet-induced obesity (DIO). Methods Male Sprague Dawley rats (n = 24) were obtained at 5 wk of age and were randomly weight-matched across 1 of 4 dietary intervention groups (6 rats per group): a casein-based diet (CAS), a high-fat high-sucrose CAS diet (HFHS CAS), a whole egg–based diet (EGG), or a high-fat high-sucrose EGG diet (HFHS EGG). All diets provided 20% (w/w) protein and were provided for 33 wk. HFHS diets provided ∼61% of kilocalories from fat and 10% from sucrose. Daily weight gain and food intake were recorded, biochemical parameters were measured via ELISA, and epididymal fat pad weights were recorded at the end of the study. Results At 33 wk, cumulative BW gain in DIO rats fed HFHS EGG resulted in 23% lower weight gain compared with DIO rats fed HFHS CAS (P < 0.0001), but no significant differences in BW gain were observed between the HFHS EGG group and the control EGG and CAS groups (P = 0.71 and P = 0.61, respectively). Relative food intake (grams per kilogram BW) was 23% lower (P < 0.0001) in rats fed HFHS CAS compared with CAS, whereas there was no difference in food intake within the EGG dietary groups. DIO rats fed HFHS EGG exhibited a 22% decrease in epididymal fat weight compared with their counterparts fed the HFHS CAS. Conclusions Our data demonstrate that consumption of a WE-based diet reduced BW gain and visceral fat in the DIO rat, similar to our previous findings in a genetic rat model with T2D.


1967 ◽  
Vol 54 (4) ◽  
pp. 645-662 ◽  
Author(s):  
Å. Hjalmarson ◽  
K. Ahrén

ABSTRACT The effect of growth hormone (GH) in vitro on the rate of intracellular accumulation of the non-utilizable amino acid α-aminoisobutyric acid (AIB) was studied in the intact rat diaphragm preparation. Bovine or ovine GH (25 μg/ml incubation medium) markedly stimulated the accumulation of AIB-14C by diaphragms from hypophysectomized rats, while there was no or only a very slight effect on diaphragms from normal rats. In diaphragms from rats with the pituitary gland autotransplanted to the kidney capsule GH in vitro stimulated the accumulation of AIB-14C significantly more than in diaphragms from normal rats but significantly less than in diaphragms from hypophysectomized rats. Injections of GH intramuscularly for 4 days to hypophysectomized rats made the diaphragms from these rats less sensitive or completely insensitive to GH in vitro. These results indicate strongly that the relative insensitivity to GH in vitro of diaphragms from normal rats is due to the fact that the muscle tissues from these rats has been exposed to the endogenously secreted GH. The results show that GH can influence the accumulation of AIB-14C in the isolated rat diaphragm in two different ways giving an acute or »stimulatory« effect and a late or »inhibitory« effect, and that it seems to be a time-relationship between these two effects of the hormone.


2021 ◽  
Vol 7 (22) ◽  
pp. eabf8719
Author(s):  
Yong Han ◽  
Guobin Xia ◽  
Yanlin He ◽  
Yang He ◽  
Monica Farias ◽  
...  

The neural circuitry mechanism that underlies dopaminergic (DA) control of innate feeding behavior is largely uncharacterized. Here, we identified a subpopulation of DA neurons situated in the caudal ventral tegmental area (cVTA) directly innervating DRD1-expressing neurons within the lateral parabrachial nucleus (LPBN). This neural circuit potently suppresses food intake via enhanced satiation response. Notably, this cohort of DAcVTA neurons is activated immediately before the cessation of each feeding bout. Acute inhibition of these DA neurons before bout termination substantially suppresses satiety and prolongs the consummatory feeding. Activation of postsynaptic DRD1LPBN neurons inhibits feeding, whereas genetic deletion of Drd1 within the LPBN causes robust increase in food intake and subsequent weight gain. Furthermore, the DRD1LPBN signaling manifests the central mechanism in methylphenidate-induced hypophagia. In conclusion, our study illuminates a hindbrain DAergic circuit that controls feeding through dynamic regulation in satiety response and meal structure.


2021 ◽  
pp. 097275312110057
Author(s):  
Archana Gaur ◽  
G.K. Pal ◽  
Pravati Pal

Background: Obesity is because of excessive fat accumulation that affects health adversely in the form of various diseases such as diabetes, hypertension, cardiovascular diseases, and many other disorders. Our Indian diet is rich in carbohydrates, and hence the sucrose-induced obesity is an apt model to mimic this. Ventromedial hypothalamus (VMH) is linked to the regulation of food intake in animals as well as humans. Purpose: To understand the role of VMHin sucrose-induced obesity on metabolic parameters. Methods: A total of 24 adult rats were made obese by feeding them on a 32% sucrose solution for 10 weeks. The VMH nucleus was ablated in the experimental group and sham lesions were made in the control group. Food intake, body weight, and biochemical parameters were compared before and after the lesion. Results: Male rats had a significant weight gain along with hyperphagia, whereas female rats did not have a significant weight gain inspite of hyperphagia. Insulin resistance and dyslipidemia were seen in both the experimental and control groups. Conclusion: A sucrose diet produces obesity which is similar to the metabolic syndrome with insulin resistance and dyslipidemia, and a VMH lesion further exaggerates it. Males are more prone to this exaggeration.


2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


1980 ◽  
Vol 165 (3) ◽  
pp. 473-479 ◽  
Author(s):  
C. Peraino ◽  
C. F. Ehret ◽  
K. R. Groh ◽  
J. C. Meinert ◽  
G. D'Arcy-Gomez

Parasitology ◽  
1982 ◽  
Vol 84 (2) ◽  
pp. 205-213 ◽  
Author(s):  
H. D. Chapman ◽  
D. L. Fernandes ◽  
T. F. Davison

SUMMARYThe effects of Eimeria maxima or restricted pair-feeding on weight gain, plasma concentrations of protein, glucose, free fatty acids (FFA) and uric acid and liver glycogen were compared in immature fowl. Food intake/kg body weight and weight gain decreased during the acute phase of infection (days 5–7) while weight loss was prolonged for an extra day compared with pair-fed birds. During recovery, food intake/kg body weight of infected birds was greater than that of non-infected controls but there was no evidence for an increase in growth rate compared with controls when body weight was considered. Growth rate of pair-fed birds was greater than that of infected birds during recovery, indicating their better use of ingested food. Liver glycogen and plasma protein concentration were decreased during the acute phase of infection but the concentrations of plasma glucose, free fatty acid (FFA) and uric acid were not affected. In pair-fed birds liver glycogen was depleted, concentrations of plasma glucose and uric acid decreased and FFA increased, and these changes persisted for the remainder of the experiment. The findings are similar to those in birds whose food has been withheld and were probably due to the pattern of food intake imposed by the experimental protocol. It is concluded that the metabolic differences between infected and pair-fed birds are of doubtful significance.


Sign in / Sign up

Export Citation Format

Share Document