Low-dose near-celiac arterial cholecystokinin suppresses food intake in rats

1992 ◽  
Vol 263 (3) ◽  
pp. R572-R577 ◽  
Author(s):  
N. Calingasan ◽  
S. Ritter ◽  
R. Ritter ◽  
L. Brenner

Exogenous cholecystokinin (CCK) suppresses food intake by acting on vagal sensory neurons. However, CCK doses used in behavioral experiments are generally much larger than those necessary to produce electrophysiological changes in vagal afferents. We made automated measurements of liquid food intake before, during, and after infusion of low doses of CCK octapeptide (CCK-8) through a chronic aortic catheter with its tip seated just above the celiac juncture. In parallel experiments, we made similar infusions while collecting blood from the hepatic portal and jugular veins for CCK assay. Injection of 10, 30, 50, and 70 pmol of CCK-8 suppressed feeding in a dose-dependent manner beginning 1 min postinfusion. The lowest dose to produce statistically significant suppression of preinfusion intake was 30 pmol. Infusion of the same CCK-8 doses into the jugular vein did not suppress feeding. Near-celiac injection of 30 pmol of CCK-8 produced systemic plasma CCK concentrations averaging 6.5 +/- 1 pM compared with less than 1 pM after saline injection. These findings show that exogenous CCK, by acting on tissues perfused by the celiac artery, can suppress feeding at doses that 1) are similar to those producing effects on the firing of vagal neurons and 2) do not increase plasma CCK concentrations above postprandial levels.

1989 ◽  
Vol 256 (1) ◽  
pp. R276-R280 ◽  
Author(s):  
T. Gerardo-Gettens ◽  
B. J. Moore ◽  
J. S. Stern ◽  
B. A. Horwitz

Lactation in the rat is marked by pronounced hyperphagia and suppression of brown fat (BAT) thermogenic capacity. We previously examined the possibility that elevated prolactin levels mediate these changes. The present study evaluated the effect of varying prolactin levels on food intake, BAT mitochondrial GDP binding, and carcass adiposity. Female rats were injected daily for 10 days with ovine prolactin at one of three doses: high = 3.0, medium = 1.0, or low = 0.3 micrograms/g body wt. Controls were injected with 0.9% NaCl. A group of uninjected rats served as an additional control. Cumulative food intake was significantly elevated in a dose-dependent manner in the prolactin-treated animals relative to the saline-injected and uninjected controls. Compared with the saline controls, the mean cumulative food intake was greatest at the high dose (20% increase), intermediate at the medium dose (17%), and smallest at the low dose (12%). Prolactin-treated rats gained significantly more weight during the experiment than did controls. Despite the hyperphagia in the prolactin-treated rats, no significant differences in BAT mitochondrial GDP binding were observed among the five groups. These data indicate that elevated prolactin levels stimulate food intake in a dose-dependent manner and that this hyperphagia is not accompanied by an increase in BAT mitochondrial GDP binding.


2021 ◽  
Author(s):  
Jianguo Li ◽  
Zhen Li ◽  
Zefeng Gao ◽  
Juan Xia ◽  
Jia Cui ◽  
...  

Abstract Vitamin D was empirically applied for Tuberculosis (TB) treatment in the past, and is currently used as an adjuvant for TB therapy. Although an increasing pile of evidences suggests that vitamin D has no therapeutic effect against TB infection, the prophylactic effect of vitamin D in preventing TB remains largely undetermined. To experimentally valuate the potential prophylactic effect of calcitriol (the active form of vitamin D) against mycobacterium infection, we performed dose-gradient calcitriol soaking in 30-day-old zebrafish before Mycobacterium marinum (M. marinum) challenge through tail vein injection. 1H-NMR metabolomics analysis was further performed for illustration of potential mechanisms underlying the prophylactic effect of calcitriol against M. marinum. The results suggested that calcitriol exerts dose-dependent prophylactic anti-mycobacterium effects, i.e., the bacterial load and the corresponding inflammatory factors (IL-1β, TNF-α, and IFN-γ) expressions in M. marinum challenged zebrafish were reduced by low-dose (25 µg/L) or high-dose (2500 µg/L) calcitriol soaking, rather than by moderate-dose (250 µg/L) calcitriol soaking. Body weight of the M. marinum challenged zebrafish was recovered by high-dose prophylactic calcitriol soaking rather than by low-dose or moderate-dose calcitriol. The 1H-NMR metabolomic profiling identified 29 metabolites with altered abundance among the dose-gradient calcitriol groups, among which 22 metabolites were co-varied with the dose of calcitriol, the rest 7 metabolites were co-varied with the bacterial load and the inflammatory response in term of cytokine expression. Further pathway analysis indicated that the glycine, serine, and threonine metabolism pathway was the activated in both of the two metabolite groups, indicating that the pathway was altered by dose-gradient of calcitriol and was in response to M. marinum infection in zebrafish. The results of the present study suggested that the activation of glycine, serine and threonine metabolism pathway may play a potential role for the dose-dependent anti-mycobacterium effect induced by prophylactic calcitriol soaking.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chunyan Hao ◽  
Zefeng Gao ◽  
XianJun Liu ◽  
Zhijiang Rong ◽  
Jingjing Jia ◽  
...  

AbstractPropionate has been reported to exert antidepressant effects, but high-dose propionate may induce autism-like symptoms in experimental animals through induction of dysbiosis of neurotransmitters. The bi-directional effects of propionate seem to be dose-dependent. However, due to the pathological discrepancies between depression and autism, conclusions drawn from autism may not be simply transferable to depression. The effect and underlying action mechanisms of high-dose propionate on depression remains undetermined. To investigate the effects of propionate on depression, propionate dose gradients were intravenously administrated to rats exposed to chronic unpredictable mild stress (CUMS) for 1 week. Results of these behavioral tests demonstrate that low-dose propionate (2 mg/kg body weight/day) induces antidepressant effect through bodyweight recovery, elevated reward-seeking behaviors, and reduced depression-like behaviors, while high-dose propionate (200 mg/kg body weight/day) induces prodepressant effects opposite of those of low-dose propionate. A comprehensive profiling of neurotransmitters in the hippocampus demonstrated that CUMS induces reduction of NE (Norepinephrine), DA (Dopamine). GABA (γ-aminobutyric acid) was recovered by low-dose propionate, while high-dose propionate exerted more complicated effects on neurotransmitters, including reduction of NE, DA, 5-Hydroxytryptamine and Tryptophan, and increase of GABA, Kynurenine, Homovanillic acid, 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine. The neurotransmitters disturbed by high-dose propionate suggest metabolic disorders in the hippocampus, which were confirmed by the clear group separation in PCA of metabolomic profiling. The results of this study demonstrate the double-edged dose-dependent effects of propionate on depression and suggest potential cumulative toxicity of propionate as a food additive to mood disorders.


2008 ◽  
Vol 197 (2) ◽  
pp. 351-358 ◽  
Author(s):  
Masaki Kakeyama ◽  
Hideko Sone ◽  
Chiharu Tohyama

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during the fetal and neonatal periods has been indicated to alter the development of the offspring later in life. In this study, we determined whether perinatal exposure to a low dose of TCDD affects the onset of puberty in the female offspring of Long-Evans hooded rats. On day 15 of gestation, pregnant female rats were administered TCDD by gavage at a single dose of 0 (vehicle), 200, or 800 ng/kg b.w. In the female offspring born to dams administered with TCDD at either 200 or 800 ng/kg b.w., the vaginal opening and first estrus occurred ∼4–7 days earlier than in the offspring born to vehicle-treated animals. The ovarian weight gain was also accelerated following exposure to TCDD in a dose-dependent manner. We next examined the ovarian compensatory hypertrophy (OCH) as an indicator of the maturation of the LH/GnRH-generating system in the pituitary and the hypothalamus. Exposure to TCDD accelerated the onset of OCH in the female offspring in a dose-dependent manner. In particular, in the offspring born to the dams exposed to TCDD at 800 ng/kg b.w., hypertrophy, which is characterized by hyperovulation and a marked increase in the weight of the remaining ovary after hemi-ovariectomy, was observed on postnatal days 27–30, which was 10 days earlier than in the offspring born to the vehicle-treated dams. These results indicate that perinatal exposure to a low dose of TCDD induces precocious puberty, including early maturation of the hypothalamic–pituitary axis, the gonads and genitals, in female Long-Evans hooded rats.


2021 ◽  
Author(s):  
Yasuhisa Noguchi ◽  
Takehisa Suzuki ◽  
Keigo Matsutani ◽  
Ryota Nakahigashi ◽  
Yoshiki Satake ◽  
...  

Toxic puffers contain the potent neurotoxin, tetrodotoxin (TTX). Although TTX is considered to serve as a defense substance, previous behavioral studies have demonstrated that TTX (extracted from the ovary) acts as an attractive pheromone for some toxic puffers. To determine the putative pheromonal action of TTX, we examined whether grass puffers (Takifugu alboplumbeus) can detect TTX using electrophysiological, morphological, and behavioral experiments. Electroolfactogram results suggest that the olfactory epithelium of grass puffers responded in a dose-dependent manner to a type of TTX analog (5,6,11-trideoxyTTX), although it did not respond to TTX. We also examined the attractive action of 5,6,11-trideoxyTTX on grass puffers by recording their swimming behavior under dark conditions. Grass puffers preferred to stay on the side of the aquarium where 5,6,11-trideoxyTTX was administered, and their swimming speed decreased. Additionally, odorant-induced labeling of olfactory sensory neurons using a fluorescent dextran conjugate or immunohistochemistry against phosphorylated extracellular signal regulated kinase (pERK) revealed that labeled olfactory sensory neurons were localized in the region surrounding "islets" where there was abundant cilia on the olfactory lamella. 5,6,11-trideoxyTTX has been known to accumulate in grass puffers, but its toxicity is much lower (almost nontoxic) than TTX. Our results suggest that grass puffers can detect 5,6,11-trideoxyTTX using their nose and may positively use this functionally unknown TTX analog as an olfactory chemoattractant.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liqing Zhang ◽  
Haifeng Ni ◽  
Zhen Zhou ◽  
Xiaoyang Yuan ◽  
Junbo Xia ◽  
...  

Background. Maternal supplementation with 1α,25-dihydroxyvitamin D3 (VD3) has immunologic effects on the developing fetus through multiple pathways. This study was aimed at investigating the effects of VD3 supplementation on immune dysregulation in the offspring during allergic rhinitis. Methods. Different doses of VD3 as well as control were given to pregnant female mice. Ovalbumin (OVA) challenge and aluminum hydroxide gel in sterile saline were used to induce allergic rhinitis in offspring mice. Nasal lavage fluids (NLF) were collected, and eosinophils were counted in NLF 24 hours after the OVA challenge. Th1, Th2, Th17, and Treg subtype-relevant cytokines, including IFN-γ, IL-4, IL-10, IL-17, TGF-β, and OVA-IgE levels from the blood and NLF of offspring mice, were detected by the enzyme-linked immunosorbent assay (ELISA) method. The Treg subtype was analyzed by flow cytometry. Treg cells were purified from offspring and were adoptively transferred to OVA-sensitized allogenic offspring mice. The outcomes were assessed in allogenic offspring. Results. Our data showed that VD3 supplementation significantly decreased the number of eosinophils, basophils, and lymphocytes in the peripheral blood and NLF. The proportion of CD4+CD25+FoxP3+Tregs had a positive correlation with VD3 in a dose-dependent manner. The levels of serum IgE, IL-4, and IL-17 were decreased while the expressions of IFN-γ, IL-10, and TGF-β were significantly enhanced in VD3 supplementation groups. Adoptive transfer CD4+CD25+FoxP3+Tregs of VD3 supplementation groups promoted Th1 and suppressed Th2 responses in the offspring during allergic rhinitis. Conclusion. Our findings indicated that low dose VD3 supply in pregnant mice’s diet suppressed Th2 and Th17 responses in allergic rhinitis by elevating the Th1 subtype and the proportion of CD4+CD25+FoxP3+Tregs in offspring. It suggested that low dose VD3 supply may have the potential to act as a new therapeutic strategy for allergic rhinitis.


2010 ◽  
Vol 31 (3) ◽  
pp. 404-405
Author(s):  
Hong Chen ◽  
Beatriz Dardik ◽  
Ling Qiu ◽  
Xianglin Ren ◽  
Shari L. Caplan ◽  
...  

ABSTRACT Cevoglitazar is a dual agonist for the peroxisome proliferator-activated receptor (PPAR)-α and -γ subtypes. Dual activation of PPARα and -γ is a therapeutic approach in development for the treatment of type 2 diabetes mellitus and diabetic dyslipidemia. In this report, we show that, in addition to improving insulin sensitivity and lipid metabolism like other dual PPAR agonists, cevoglitazar also elicits beneficial effects on energy homeostasis in two animal models of obesity. In leptin-deficient ob/ob mice, administration of cevoglitazar at 0.5, 1, or 2 mg/kg for 18 d led to acute and sustained, dose-dependent reduction of food intake and body weight. Furthermore, plasma levels of glucose and insulin were normalized after 7 d of cevoglitazar treatment at 0.5 mg/kg. Plasma levels of free fatty acids and triglycerides were dose-dependently reduced. In obese and insulin-resistant cynomolgus monkeys, treatment with cevoglitazar at 50 and 500 μg/kg for 4 wk lowered food intake and body weight in a dose-dependent manner. In these animals, cevoglitazar also reduced fasting plasma insulin and, at the highest dose, reduced hemoglobin A1c levels by 0.4%. These preclinical results demonstrate that cevoglitazar holds promise for the treatment of diabetes and obesity-related disorders because of its unique beneficial effect on energy balance in addition to improving glycemic and metabolic control.


Insects ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 18 ◽  
Author(s):  
Steven C. Cook

Use of neonicotinoid pesticides is now ubiquitous, and consequently non-targeted arthropods are exposed to their residues at sub-lethal doses. Exposure to these neurotoxins may be a major contributor to poor honey bee colony health. Few studies have explored how sub lethal exposure to neonicotinoids affects honey bee metabolic physiology, including nutritional and energetic homeostasis, both of which are important for maintaining colony health. Reported here are results from a study of chronic oral exposure of honey bees to two sub lethal concentrations of clothianidin and imidacloprid. Neonicotinoids altered important aspects of honey bee nutritional and metabolic physiology in a compound and dose-dependent manner; both compounds at low doses reduced honey bee body weight. Low-dose clothianidin exposure resulted in bees having protein, lipids, carbohydrates, and glycogen levels similar to newly emerged bees. High-dose clothianidin exposure lowered lipids and glycogen content of bees. High-dose imidacloprid exposure resulted in bees having depressed metabolic rate. Low-dose imidacloprid exposure resulted in bees consuming low and high levels of protein and carbohydrate rich foods, respectively. Results suggest neonicotinoids interfere with honey bee endocrine neurophysiological pathways. Compound and dose-dependent effects might represent respective chemical structural differences determining an observed effect, and thresholds of compound effects on honey bee physiology.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 999-999
Author(s):  
Denise E. Sabatino ◽  
Amy M. Lange ◽  
Melinda Mucci ◽  
Rita Sarkar ◽  
Aaron M. Dillow ◽  
...  

Abstract Hemophilia A (HA) is an X-linked bleeding disorder characterized by deficiency in clotting factor VIII (FVIII). Current treatment for hemophilia is protein replacement therapy while a gene-based therapy would provide continuous expression of even low levels of FVIII protein (>1% of normal) that is likely to improve the disease phenotype. It is challenging to utilize an AAV-mediated gene transfer approach for the FVIII cDNA (4.4kb) since the AAV vector can only efficiently accommodate a <5.3kb transgene cassette. The FVIII protein is composed of 2 chains -the heavy chain (HC) and the light chain (LC). FVIII undergoes proteolytic cleavage and processing of the 2 individual chains that form the active FVIII protein. In other studies in HA dogs (n=8), no dose-response and AAV serotype-dependent FVIII expression has been documented, which illustrates the difficulties in using a FVIII single-chain approach. We have utilized a 2-chain approach in which the 2.4kb LC cDNA is packaged in one AAV vector while the 2.5kb HC is packaged into a second AAV vector. Each construct contains a 695bp thyroxine-binding globulin gene promoter/enhancer fused to a 175bp intron along with a 263bp SV40 poly A signal. For this approach the LC and HC vectors packaged into either AAV8 or AAV9 were administered to HA dogs via the hepatic artery. Two male HA dogs received HC and LC in AAV8 and 2 male dogs received HC and LC in AAV9 at doses of 6x1012gc/vector/kg (low dose) or 1.25x1013gc/v/kg (high dose). At 150 days after vector infusion, the high dose group expressed FVIII at levels of 4.8% (AAV8) and 3% (AAV9) as detected by a functional assay (Coatest assay). FVIII remained stable for 797 days (AAV8) and >200 days (AAV9) (the longest time points to date) without any evidence of antibody formation to the transgene. In the low dose group at 150 days, FVIII levels were 1.5% (AAV8) and 0.5% (AAV9) cFVIII activity and were maintained in a follow up period of >150 days (AAV8) and >700 days (AAV9) without formation of antibodies to FVIII. Thus, no major differences between AAV8 and AAV9 vectors were observed. The transgene product is also functional based on shortening of whole blood clotting time (baseline values >50 min), in a dose-dependent manner, 10–15 min and 16–20 min for the high and low dose cohorts, respectively. Interestingly, high dose injection of AAV8 to 2 female HA dogs (1.25x1013 and 3x1013gc/v/kg) results in FVIII levels of 1–2%, which is consistent with data obtained in mice on the poor performance of AAV in mediating gene transfer to liver in female animals. Liver function tests and other blood chemistries were transiently elevated after the surgical procedure and were in normal limits within 4 days. Importantly, all dogs did not develop antibodies to FVIII. These findings suggest that FVIII chains efficiently assemble in vivo without increasing the protein immunogenicity. The 4 male dogs have remained asymptomatic with no spontaneous bleeds, whereas >20 bleeding episodes were expected for this group since untreated dogs require 5.5 plasma infusions/year. These data demonstrate for the first time, dose-dependent sustained expression of functional cFVIII in HA dogs by AAV8 and AAV9 vectors without formation of antibodies to cFVIII.


1998 ◽  
Vol 274 (4) ◽  
pp. E627-E633 ◽  
Author(s):  
David S. Ludwig ◽  
Kathleen G. Mountjoy ◽  
Jeffrey B. Tatro ◽  
Jennifer A. Gillette ◽  
Robert C. Frederich ◽  
...  

Melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH) demonstrate opposite actions on skin coloration in teleost fish. Both peptides are present in the mammalian brain, although their specific physiological roles remain largely unknown. In this study, we examined the interactions between MCH and α-MSH after intracerebroventricular administration in rats. MCH increased food intake in a dose-dependent manner and lowered plasma glucocorticoid levels through a mechanism involving ACTH. In contrast, α-MSH decreased food intake and increased glucocorticoid levels. MCH, at a twofold molar excess, antagonized both actions of α-MSH. α-MSH, at a threefold molar excess, blocked the orexigenic properties of MCH. MCH did not block α-MSH binding or the ability of α-MSH to induce cAMP in cells expressing either the MC3 or MC4 receptor, the principal brain α-MSH receptor subtypes. These data suggest that MCH and α-MSH exert opposing and antagonistic influences on feeding behavior and the stress response and may function in a coordinate manner to regulate metabolism through a novel mechanism mediated in part by an MCH receptor.


Sign in / Sign up

Export Citation Format

Share Document