Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake

1999 ◽  
Vol 276 (4) ◽  
pp. R1172-R1179 ◽  
Author(s):  
James P. DeLany ◽  
Fawn Blohm ◽  
Alycia A. Truett ◽  
Joseph A. Scimeca ◽  
David B. West

Recent reports have demonstrated that conjugated linoleic acid (CLA) has effects on body fat accumulation. In our previous work, CLA reduced body fat accumulation in mice fed either a high-fat or low-fat diet. Although CLA feeding reduced energy intake, the results suggested that some of the metabolic effects were not a consequence of the reduced food intake. We therefore undertook a study to determine a dose of CLA that would have effects on body composition without affecting energy intake. Five doses of CLA (0.0, 0.25, 0.50, 0.75, and 1.0% by weight) were studied in AKR/J male mice ( n = 12/group; age, 39 days) maintained on a high-fat diet (%fat 45 kcal). Energy intake was not suppressed by any CLA dose. Body fat was significantly lower in the 0.50, 0.75, and 1.0% CLA groups compared with controls. The retroperitoneal depot was most sensitive to the effects of CLA, whereas the epididymal depot was relatively resistant. Higher doses of CLA also significantly increased carcass protein content. A time-course study of the effects of 1% CLA on body composition showed reductions in fat pad weights within 2 wk and continued throughout 12 wk of CLA feeding. In conclusion, CLA feeding produces a rapid, marked decrease in fat accumulation, and an increase in protein accumulation, at relatively low doses without any major effects on food intake.

1998 ◽  
Vol 275 (3) ◽  
pp. R667-R672 ◽  
Author(s):  
David B. West ◽  
James P. Delany ◽  
Patricia M. Camet ◽  
Fawn Blohm ◽  
Alycia A. Truett ◽  
...  

Conjugated linoleic acid (CLA) is a naturally occurring group of dienoic derivatives of linoleic acid found in the fat of beef and other ruminants. CLA is reported to have effects on both tumor development and body fat in animal models. To further characterize the metabolic effects of CLA, male AKR/J mice were fed a high-fat (45 kcal%) or low-fat (15 kcal%) diet with or without CLA (2.46 mg/kcal; 1.2 and 1.0% by weight in high- and low-fat diets, respectively) for 6 wk. CLA significantly reduced energy intake, growth rate, adipose depot weight, and carcass lipid and protein content independent of diet composition. Overall, the reduction of adipose depot weight ranged from 43 to 88%, with the retroperitoneal depot most sensitive to CLA. CLA significantly increased metabolic rate and decreased the nighttime respiratory quotient. These findings demonstrate that CLA reduces body fat by several mechanisms, including a reduced energy intake, increased metabolic rate, and a shift in the nocturnal fuel mix.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1811
Author(s):  
Edyta Mądry ◽  
Ida Judyta Malesza ◽  
Mehala Subramaniapillai ◽  
Agata Czochralska-Duszyńska ◽  
Marek Walkowiak ◽  
...  

Preliminary evidence suggests that conjugated linoleic acid (CLA) may reduce body weight and affect body composition. The present study assessed the effect of CLA supplementation on body fat composition in overweight and obese women, while also evaluating the liver safety of CLA use. Seventy-four obese or overweight women were randomly assigned to receive 3 g/day CLA or placebo for 12 weeks. Body composition (dual-energy X-ray absorptiometry) and liver function (13C-methacetin breath test and serum liver enzymes) were assessed before and after the trial. Patients receiving CLA experienced a significant reduction of total body fat expressed as mass (p = 0.0007) and percentage (p = 0.0006), android adipose tissue (p = 0.0002), gynoid adipose tissue (p = 0.0028), and visceral adipose tissue (p = 4.2 × 10−9) as well as a significant increase in lean body mass to height (p = 6.1 × 10−11) when compared to those receiving a placebo. The maximum momentary 13C recovery changes and end-point values were significantly higher in the CLA group when compared to the placebo group (p = 0.0385 and p = 0.0076, respectively). There were no significant changes in alanine aminotransferase, asparagine aminotransferase, and gamma-glutamyl transpeptidase activities between the groups. In conclusion, CLA supplementation was well tolerated and safe for the liver, which shows beneficial effects on fat composition in overweight and obese women.


2016 ◽  
Vol 311 (3) ◽  
pp. R618-R627 ◽  
Author(s):  
Eva-Lena Stenblom ◽  
Emil Egecioglu ◽  
Caroline Montelius ◽  
Deepti Ramachandran ◽  
Britta Bonn ◽  
...  

Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with ( n = 8) or without thylakoids ( n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated ( n = 10) and control rats ( n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats ( n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase ( Fat/Cd36), carnitine palmitoyltransferase 1a ( Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 ( Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats ( n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.


2009 ◽  
Vol 102 (11) ◽  
pp. 1583 ◽  
Author(s):  
Jonatan Miranda ◽  
Itziar Churruca ◽  
Alfredo Fernández-Quintela ◽  
Victor Manuel Rodríguez ◽  
María Teresa Macarulla ◽  
...  

2003 ◽  
Vol 59 (3) ◽  
pp. 193-199 ◽  
Author(s):  
V. Navarro ◽  
A. Zabala ◽  
M. T. Macarulla ◽  
A. Fernández-Quintela ◽  
V. M. Rodríguez ◽  
...  

Nutrition ◽  
2001 ◽  
Vol 17 (5) ◽  
pp. 385-390 ◽  
Author(s):  
Shaikh Mizanoor Rahman ◽  
Yu-Ming Wang ◽  
Hiroaki Yotsumoto ◽  
Jae-Young Cha ◽  
Seo-Young Han ◽  
...  

2012 ◽  
Vol 15 (4) ◽  
pp. 406-412 ◽  
Author(s):  
Jocelem Mastrodi Salgado ◽  
Tânia Rachel Baroni Ferreira ◽  
Carlos M. Donado-Pestana ◽  
Omer Cavalcanti de Almeida ◽  
Aline Mouro Ribeiro das Neves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document