Screening for increased plasma urea levels in a large-scale ENU mouse mutagenesis project reveals kidney disease models

2007 ◽  
Vol 292 (5) ◽  
pp. F1560-F1567 ◽  
Author(s):  
Bernhard Aigner ◽  
Birgit Rathkolb ◽  
Nadja Herbach ◽  
Elisabeth Kemter ◽  
Christina Schessl ◽  
...  

Kidney diseases lead to the failure of urinary excretion of metabolism products. In the Munich ethylnitrosourea (ENU) mouse mutagenesis project, which is done on a C3H inbred genetic background, blood samples of more than 15,000 G1 offspring and 500 G3 pedigrees were screened for alterations in clinical-chemical parameters. We identified 44 animals consistently exhibiting increased plasma urea concentrations. Transmission analysis of the altered phenotype of 23 mice to subsequent generations led to the establishment of five mutant lines. Both sexes were affected in these lines. Urinary urea levels were decreased in the mutants. In addition, most mutants showed increased plasma and decreased urinary creatinine levels. Pathological investigation of kidneys from the five mutant lines revealed a broad spectrum of alterations, ranging from no macroscopic and light microscopic kidney alterations to decreased kidney weight-to-body weight ratio, dilation of the renal pelvis, and severe glomerular lesions. Thus screening for elevated plasma urea levels in a large-scale ENU mouse mutagenesis project resulted in the successful establishment of mouse strains which are valuable tools for molecular studies of mechanisms involved in urea excretion or which represent interesting models for kidney diseases.

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1765-1778
Author(s):  
Gregory J Budziszewski ◽  
Sharon Potter Lewis ◽  
Lyn Wegrich Glover ◽  
Jennifer Reineke ◽  
Gary Jones ◽  
...  

Abstract We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening ~38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype.


Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3005-3017 ◽  
Author(s):  
Katie T. Y. Lee ◽  
Subashini Karunakaran ◽  
Maggie M. Ho ◽  
Susanne M. Clee

Recently, novel inbred mouse strains that are genetically distinct from the commonly used models have been developed from wild-caught mice. These wild-derived inbred strains have been included in many of the large-scale genomic projects, but their potential as models of altered obesity and diabetes susceptibility has not been assessed. We examined obesity and diabetes-related traits in response to high-fat feeding in two of these strains, PWD/PhJ (PWD) and WSB/EiJ (WSB), in comparison with C57BL/6J (B6). Young PWD mice displayed high fasting insulin levels, although they had normal insulin sensitivity. PWD mice subsequently developed a much milder and delayed-onset obesity compared with B6 mice but became as insulin resistant. PWD mice had a robust first-phase and increased second-phase glucose-stimulated insulin secretion in vivo, rendering them more glucose tolerant. WSB mice were remarkably resistant to diet-induced obesity and maintained very low fasting insulin throughout the study. WSB mice exhibited more rapid glucose clearance in response to an insulin challenge compared with B6 mice, consistent with their low percent body fat. Interestingly, in the absence of a measurable in vivo insulin secretion, glucose tolerance of WSB mice was better than B6 mice, likely due to their enhanced insulin sensitivity. Thus PWD and WSB are two obesity-resistant strains with unique insulin secretion phenotypes. PWD mice are an interesting model that dissociates hyperinsulinemia from obesity and insulin resistance, whereas WSB mice are a model of extraordinary resistance to a high-fat diet.


2000 ◽  
Vol 11 (7) ◽  
pp. 507-510 ◽  
Author(s):  
Dian Soewarto ◽  
Christiane Fella ◽  
Andreas Teubner ◽  
Birgit Rathkolb ◽  
Walter Pargent ◽  
...  

2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.


2019 ◽  
Author(s):  
Michael Hagemann-Jensen ◽  
Christoph Ziegenhain ◽  
Ping Chen ◽  
Daniel Ramsköld ◽  
Gert-Jan Hendriks ◽  
...  

AbstractLarge-scale sequencing of RNAs from individual cells can reveal patterns of gene, isoform and allelic expression across cell types and states1. However, current single-cell RNA-sequencing (scRNA-seq) methods have limited ability to count RNAs at allele- and isoform resolution, and long-read sequencing techniques lack the depth required for large-scale applications across cells2,3. Here, we introduce Smart-seq3 that combines full-length transcriptome coverage with a 5’ unique molecular identifier (UMI) RNA counting strategy that enabled in silico reconstruction of thousands of RNA molecules per cell. Importantly, a large portion of counted and reconstructed RNA molecules could be directly assigned to specific isoforms and allelic origin, and we identified significant transcript isoform regulation in mouse strains and human cell types. Moreover, Smart-seq3 showed a dramatic increase in sensitivity and typically detected thousands more genes per cell than Smart-seq2. Altogether, we developed a short-read sequencing strategy for single-cell RNA counting at isoform and allele-resolution applicable to large-scale characterization of cell types and states across tissues and organisms.


2007 ◽  
Vol 85 (11) ◽  
pp. 1071-1081 ◽  
Author(s):  
Edward J. Harrison ◽  
Michael Bush ◽  
Jonathan M. Plett ◽  
Daniel P. McPhee ◽  
Robin Vitez ◽  
...  

We have produced the largest population of activation-tagged poplar trees to date, approximately 1800 independent lines, and report on phenotypes of interest that have been identified in tissue culture and greenhouse conditions. Activation tagging is an insertional mutagenesis technique that results in the dominant upregulation of an endogenous gene. A large-scale Agrobacterium -mediated transformation protocol was used to transform the pSKI074 activation-tagging vector into Populus tremula × Populus alba hybrid poplar. We have screened the first 1000 lines for developmental abnormalities and have a visible mutant frequency of 2.4%, with alterations in leaf and stem structure as well as overall stature. Most of the phenotypes represent new phenotypes that have not previously been identified in poplar and, in some cases, not in any other plant either. Molecular analysis of the T-DNA inserts of a subpopulation of mutant lines reveal both single and double T-DNA inserts with double inserts more common in lines with visible phenotypes. The broad range of developmental mutants identified in this pilot screen of the population reveals that it will be a valuable resource for gene discovery in poplar. The full value of this population will only be realized as we screen these lines for a wide range of phenotypes.


Author(s):  
Matthew Barth ◽  
Theodore Younglove ◽  
Tom Wenzel ◽  
George Scora ◽  
Feng An ◽  
...  

The initial phase of a long-term project with national implications for the improvement of transportation and air quality is described. The overall objective of the research is to develop and verify a computer model that accurately estimates the impacts of a vehicle’s operating mode on emissions. This model improves on current emission models by allowing for the prediction of how traffic changes affect vehicle emissions. Results are presented that address the following points: vehicle recruitment, preliminary estimates of reproducibility, preliminary estimates of air conditioner effects, and preliminary estimates of changes in emissions relative to speed. As part of the development of a comprehensive modal emission model for light-duty vehicles, 28 distinct vehicle/technology categories have been identified based on vehicle class, emission control technology, fuel system, emission standard level, power-to-weight ratio, and emitter level (i.e., normal versus high emitter). These categories and the sampling proportions in a large-scale emissions testing program (over 300 vehicles to be tested) have been chosen in part based on emissions contribution. As part of the initial model development, a specific modal emissions testing protocol has been developed that reflects both real-world and specific modal events associated with different levels of emissions. This testing protocol has thus far been applied to an initial fleet of 30 vehicles, where at least 1 vehicle falls into each defined vehicle/technology category. The different vehicle/technology categories, the emissions testing protocol, and preliminary analysis that has been performed on the initial vehicle fleet are described.


2020 ◽  
Vol 21 (13) ◽  
pp. 4774 ◽  
Author(s):  
Jun Ho Lee ◽  
Dae Hyun Ha ◽  
Hyeon-kyu Go ◽  
Jinkwon Youn ◽  
Hyun-keun Kim ◽  
...  

Acute kidney injury (AKI) is a fatal medical episode caused by sudden kidney damage or failure, leading to the death of patients within a few hours or days. Previous studies demonstrated that exosomes derived from various mesenchymal stem/stromal cells (MSC-exosomes) have positive effects on renal injuries in multiple experimental animal models of kidney diseases including AKI. However, the mass production of exosomes is a challenge not only in preclinical studies with large animals but also for successful clinical applications. In this respect, tangential flow filtration (TFF) is suitable for good manufacturing practice (GMP)-compliant large-scale production of high-quality exosomes. Until now, no studies have been reported on the use of TFF, but rather ultracentrifugation has been almost exclusively used, to isolate exosomes for AKI therapeutic application in preclinical studies. Here, we demonstrated the reproducible large-scale production of exosomes derived from adipose tissue-derived MSC (ASC-exosomes) using TFF and the lifesaving effect of the ASC-exosomes in a lethal model of cisplatin-induced rat AKI. Our results suggest the possibility of large-scale stable production of ASC-exosomes without loss of function and their successful application in life-threatening diseases.


2015 ◽  
Vol 5 (1) ◽  
pp. 97 ◽  
Author(s):  
Marcus Schulze ◽  
Holger Seidlitz ◽  
Franziska Konig ◽  
Sabine WeiB

<p class="1Body">Multi-layer constructions become more and more relevant in lightweight applications due to their high strength to weight ratio. They offer excellent crash, damping and recycling properties. Also, the morphology of thermoplastic carbon fibre reinforced plastics (CFRP) render them interesting for large scale manufacturing processes. Nevertheless, a major disadvantage results in a poor resistance against wear and tear, e.g. erosion, which is attributed to weak hardness properties. Hence, this work deals with tribological investigations on orthotropic carbon fibre reinforced polymers (PA 6) either with protective ceramic coating or without. The chosen coating system is a well-known protective covering of metal components, e.g. metal cutting tools, produced by physical vapor deposition (PVD). To characterize the coating system on thermoplastic CFRP, standard analyzing methods are utilized, like optical and scanning electron microscopy (SEM). The tribological investigations are conducted by the tribological ball on disk method to generate wear tracks on the sample surfaces and hence to calculate the wear rates. These results are compared to literature findings with respect to a certain protective coating system (TiN) and a second nano-structured gel coating system, where both systems are deposited on a thermosetting material, i.e. carbon fibre reinforced epoxy resin, respectively. For this purpose the feasibility of depositing a protective ceramic layer on thermoplastic CFRP is demonstrated. First results on suitable surface pre-treatments have shown a significant influence on the coating quality. The improved performance regarding the wear behavior with respect to tribology compared to the poor substrate and existing technologies is shown additionally.</p>


2002 ◽  
Vol 11 (3) ◽  
pp. 185-193 ◽  
Author(s):  
Luanne L. Peters ◽  
Eleanor M. Cheever ◽  
Heather R. Ellis ◽  
Phyllis A. Magnani ◽  
Karen L. Svenson ◽  
...  

The Mouse Phenome Project is an international effort to systematically gather phenotypic data for a defined set of inbred mouse strains. For such large-scale projects the development of high-throughput screening protocols that allow multiple tests to be performed on a single mouse is essential. Here we report hematologic and coagulation data for more than 30 inbred strains. Complete blood counts were performed using an Advia 120 analyzer. For coagulation testing, we successfully adapted the Dade Behring BCS automated coagulation analyzer for use in mice by lowering sample and reagent volume requirements. Seven automated assay procedures were developed. Small sample volume requirements make it possible to perform multiple tests on a single animal without euthanasia, while reductions in reagent volume requirements reduce costs. The data show that considerable variation in many basic hematological and coagulation parameters exists among the inbred strains. These data, freely available on the World Wide Web, allow investigators to knowledgeably select the most appropriate strain(s) to meet their individual study designs and goals.


Sign in / Sign up

Export Citation Format

Share Document