Lipoxins: endogenous regulators of inflammation

2004 ◽  
Vol 286 (2) ◽  
pp. F189-F201 ◽  
Author(s):  
Blaithin McMahon ◽  
Catherine Godson

Over the past decade, compelling in vivo and in vitro studies have highlighted lipoxins (LXs) and aspirin-triggered LXs (ATLs) as endogenously produced anti-inflammatory eicosanoids. LXs and ATLs elicit distinct anti-inflammatory and proresolution bioactions that include inhibition of leukocyte-mediated injury, stimulation of macrophage clearance of apoptotic neutrophils, repression of proinflammatory cytokine production, modulation of cytokine-stimulated metalloproteinase activity, and inhibition of cell proliferation and migration. An overview of recent advances in LX physiology is provided, with particular emphasis on the cellular and molecular processes involved. These data coupled with in vivo models of inflammatory diseases suggest that LX bioactions may be amenable to pharmacological mimicry for therapeutic gain.

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 875 ◽  
Author(s):  
Chao Zhang ◽  
Chaoying Li ◽  
Xuejing Jia ◽  
Kai Wang ◽  
Yanbei Tu ◽  
...  

Background: Polyphyllin VII (PP7), a steroidal saponin from Paris polyphylla, has been found to exert strong anticancer activity. Little is known about the anti-inflammatory property of PP7. In this study, the anti-inflammatory activity and its underlying mechanisms of PP7 were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in multiple animal models. Methods: The content of nitric oxide (NO) was determined by spectrophotometry. The levels of prostaglandin E2 (PGE2) and cytokines were measured by enzyme-linked immunosorbent assay (ELISA) assay. The mRNA expression of pro-inflammatory genes was determined by qPCR. The total and phosphorylated protein levels were examined by Western blotting. The in vivo anti-inflammatory activities were evaluated by using mouse and zebrafish models. Results: PP7 reduced the production of NO and PGE2 and the protein and mRNA expressions of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and enzymes (inducible NO synthase [iNOS], cyclooxygenase-2 [COX-2], and Matrix metalloproteinase-9 [MMP-9]) in LPS-induced RAW264.7 cells by suppressing the NF-κB and MAPKs pathways. Notably, PP7 markedly inhibited xylene-induced ear edema and cotton pellet-induced granuloma formation in mice and suppressed LPS and CuSO4-induced inflammation and toxicity in zebrafish embryos. Conclusion: This study demonstrates that PP7 exerts strong anti-inflammatory activities in multiple in vitro and in vivo models and suggests that PP7 is a potential novel therapeutic agent for inflammatory diseases.


2020 ◽  
Vol 16 (8) ◽  
pp. 1227-1244
Author(s):  
Dharmendra Kumar ◽  
Pramod K. Sharma

Background:: Opuntia species, locally known as prickly pear was used for various purposes as food, medicine, beverage, source of dye and animal food. Many studies have revealed its pharmacology activity from time to time. This review is a collection of chemistry, pharmacognosy, pharmacology and bioapplications of the cactus family. Methods: Many sources were used to collect information about Opuntia species such as Pub med, Google scholar, Agris, science direct, Embase, Merk index, Wiley online library, books and other reliable sources. This review contains studies from 1812 to 2019. Results: The plants from the cactus family offer various pharmacological active compounds including phenolic compounds, carotenoids, betalains, vitamins, steroids, sugar, amino acids, minerals and fibers. These bioactive compounds serve various pharmacological activities such as anticancer, antiviral, anti-diabetic, Neuroprotective, anti-inflammatory, antioxidant, Hepatoprotective, antibacterial, antiulcer and alcohol hangover. According to various studies, Opuntia species offer many bioapplications such as fodder for animal, soil erosion, prevention, human consumption and waste water decontamination. Finally, different parts of plants are used in various formulations that offer many biotechnology applications. Conclusion: Different parts of Opuntia plant (fruits, seeds, flowers and cladodes) are used in various health problems which include wound healing, anti-inflammatory and urinary tract infection from ancient times. Nowadays, researches have extended several pharmacological and therapeutic uses of Opuntia species as discussed in this review. Many in-vitro and in-vivo models are also discussed in this review as the proofs of research findings. Various research gaps have been observed in current studies that require attention in the future.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jianye Xu ◽  
Jian Zhang ◽  
Zongpu Zhang ◽  
Zijie Gao ◽  
Yanhua Qi ◽  
...  

AbstractExosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Chenjing Zhang ◽  
Xiaolu Zhou ◽  
Xiaoge Geng ◽  
Yu Zhang ◽  
Jingya Wang ◽  
...  

AbstractDysregulation of circular RNA (circRNA) expression is involved in the progression of cancer. Here, we aimed to study the potential function of hsa_circ_0006401 in colorectal cancer (CRC). CircRNA hsa_circ_0006401 expression levels in CRC and adjacent nontumor tissues were analyzed by real-time quantitative PCR (qRT-PCR) and circRNA in situ hybridization (RNA-ISH). Then, CRC cell proliferation was assessed by cell counting. Wound-healing and transwell assays were utilized to detect the effect of hsa_circ_0006401 on CRC migration. A circRNA-ORF construct was created, and a specific antibody against the splice junction of hsa_circ_0006401 was prepared. Finally, the proteins directly binding to hsa_circ_0006401 peptides were identified by immunoprecipitation combined with mass spectrometry. In our study, we found hsa_circ_0006401 was closely related to CRC metastasis and exhibited upregulated expression in metastatic CRC tissue samples. Proliferation and migration were inhibited in vitro when hsa_circ_0006401 expression was silenced. Downregulation of hsa_circ_0006401 expression decreased CRC proliferation and liver metastasis in vivo. A 198-aa peptide was encoded by sequences of the splice junction absent from col6a3. Hsa_circ_0006401 promoted CRC proliferation and migration by encoding the hsa_circ_0006401 peptide. Hsa_circ_0006401 peptides decreased the mRNA and protein level of the host gene col6a3 by promoting col6a3 mRNA stabilation. In conclusion, our study revealed that circRNAs generated from col6a3 that contain an open-reading frame (ORF) encode a novel 198-aa functional peptide and hsa_circ_0006401 peptides promote stability of the host gene col6a3 mRNA to promote CRC proliferation and metastasis.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Heyun Zhang ◽  
Zhangyu Zheng ◽  
Rongqin Zhang ◽  
Yongcong Yan ◽  
Yaorong Peng ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii101-ii101
Author(s):  
Christoph Kesseler ◽  
Julian Kahr ◽  
Natalie Waldt ◽  
Nele Stroscher ◽  
Josephine Liebig ◽  
...  

Abstract PURPOSE To evaluate the role of the small GTPases RhoA, Rac1 and Cdc42 in meningiomas as therapeutic targets and their interactions in meningiomas. EXPERIMENTAL DESIGN We analyzed expression of GTPases in human meningioma samples and meningioma cell lines of various WHO grades. Malignant IOMM-Lee meningioma cells were used to generate shRNA mediated knockdowns of GTPases RhoA, Rac1 or Cdc42 and to study knockdown effects on proliferation and migration, as well as analysis of cell morphology by confocal microscopy. The same tests were used to investigate effects of the two inhibitors Fasudil and EHT-1864 of malignant IOMM-Lee, KT21 and benign Ben-Men cells and the effects of these drugs on IOMM-Lee knockdown cells. The effects of GTPase knockdowns and Fasudil treatment were studied in terms of overall survival by intracranial xenografts of mice. Potential interactions of GTPases regarding NF2, mTOR and FAK-Paxillin were examined. RESULTS Small GTPases were upregulated in meningiomas of higher tumor grades. Reduced proliferation and migration could be achieved by GTPase knockdown in IOMM-Lee cells. Additionally, the ROCK-inhibitor Fasudil and Rac1-inhibitor EHT-1864 reduced proliferation in different meningioma cell lines and reduced proliferation and migration independent of GTPase knockdowns/status. Moreover, overall survival in vivo could also be increased by knockdowns of RhoA and Rac1 as well as Fasudil treatment. GTPase expression was affected dependent on the NF2 status but effects were not very distinct, indicating that NF2 is not strongly involved in GTPase regulation in meningiomas. In terms of mTOR and FAK-Paxillin signaling, each GTPase changes those pathways in a different manner. CONCLUSION Small GTPases are important effectors in meningioma proliferation and migration in vitro as well as survival in vivo and their inhibition should be considered as potential treatment option.


2021 ◽  
Vol 22 (11) ◽  
pp. 5602
Author(s):  
Hyeon Young Park ◽  
Mi-Jin Kim ◽  
Seunghyeong Lee ◽  
Jonghwa Jin ◽  
Sungwoo Lee ◽  
...  

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


Sign in / Sign up

Export Citation Format

Share Document