Oxidants and antioxidants in exercise

1995 ◽  
Vol 79 (3) ◽  
pp. 675-686 ◽  
Author(s):  
C. K. Sen

There is consistent evidence from human and animal studies that strenuous physical exercise may induce a state wherein the antioxidant defenses of several tissues are overwhelmed by excess reactive oxygen. A wide variety of physiological and dietary antioxidants act in concert to evade such a stress. Submaximal long-duration exercise training may augment the physiological antioxidant defenses in several tissues; however, this enhanced protection may not be sufficient to completely protect highly fit individuals from exhaustive exercise-induced oxidative stress. Regular physical activity in association with dietary habits that ensure adequate supply of a combination of appropriate antioxidants may be expected to yield desirable results. The significance of this area of research, current state of information, and possibilities of further investigation are briefly reviewed.

2004 ◽  
Vol 29 (3) ◽  
pp. 245-263 ◽  
Author(s):  
Richard J. Bloomer ◽  
Allan H. Goldfarb

Oxidative stress and subsequent damage to cellular proteins, lipids, and nucleic acids, as well as changes to the glutathione system, are well documented in response to aerobic exercise. However, far less information is available on anaerobic exercise-induced oxidative modifications. Recent evidence indicates that high intensity anaerobic work does result in oxidative modification to the above-mentioned macromolecules in both skeletal muscle and blood. Also, it appears that chronic anaerobic exercise training can induce adaptations that act to attenuate the exercise-induced oxidative stress. These may be specific to increased antioxidant defenses and/or may act to reduce the generation of pro-oxidants during and after exercise. However, a wide variety of exercise protocols and assay procedures have been used to study oxidative stress pertaining to anaerobic work. Therefore, precise conclusions about the exact extent and location of oxidative macromolecule damage, in addition to the adaptations resulting from chronic anaerobic exercise training, are difficult to indicate. This manuscript provides a review of anaerobic exercise and oxidative stress, presenting both the acute effects of a single exercise bout and the potential for adaptations resulting from chronic anaerobic training. Key words: antioxidants, free radicals, training, lipid peroxidation, protein carbonyls


2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle


2019 ◽  
Vol 316 (5) ◽  
pp. E829-E836 ◽  
Author(s):  
Hui Zhang ◽  
Ciarán E. Fealy ◽  
John P. Kirwan

Obesity is a major risk factor for metabolic disease. Growth differentiation factor 15 (GDF15) has shown promise as a weight loss agent for obesity in animal studies. In healthy lean humans, fasting plasma GDF15 increases after acute exercise. However, the role of GDF15 in human obesity and the response of plasma GDF15 to exercise training in patients with obesity is unknown. Here, 24 sedentary volunteers with obesity [age: 65 ± 1 yr; body mass index (BMI): 35.3 ± 0.9 kg/m2] participated in a supervised 12-wk aerobic exercise intervention: 1 h/day, 5 days/wk at ~85% maximum heart rate with controlled isocaloric diet. As a result, plasma GDF15 was significantly increased (PRE: 644.1 ± 42.6 pg/ml, POST: 704.4 ± 47.2 pg/ml, P < 0.01) after the exercise intervention. Inconsistent with animal models, ΔGDF15 was not correlated with change in weight, BMI, or resting energy expenditure. However, ΔGDF15 was correlated with a reduction in total fat mass ( P < 0.05), abdominal fat mass ( P < 0.05), and android fat mass ( P ≤ 0.05). Participants with a positive GDF15 response to exercise had increased total fat oxidation (PRE: 0.25 ± 0.05 mg·kg−1·min−1, POST: 0.43 ± 0.07 mg·kg−1·min−1, P ≤ 0.05), metabolic flexibility [PRE: −0.01 ± 0.01 delta respiratory quotient (RQ), POST: 0.06 ± 0.01 delta RQ, P < 0.001], and insulin sensitivity (PRE: 0.33 ± 0.01 QUICKI index, POST: 0.34 ± 0.01 QUICKI index, P < 0.01), suggesting a link between GDF15 and fat mass loss as well as exercise-induced metabolic improvement in humans with obesity. We conclude that the exercise-induced increase in plasma GDF15 and the association with reduced fat mass may indicate a role for GDF15 as a therapeutic target for human obesity.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S122
Author(s):  
K Koyama ◽  
D Ando ◽  
J Yokouchi ◽  
Y Ono ◽  
M Kaya ◽  
...  

2006 ◽  
Vol 290 (4) ◽  
pp. H1680-H1685 ◽  
Author(s):  
Monica Kukielka ◽  
Douglas R. Seals ◽  
George E. Billman

The present study investigated the effects of long-duration exercise on heart rate variability [as a marker of cardiac vagal tone (VT)]. Heart rate variability (time series analysis) was measured in mongrel dogs ( n = 24) with healed myocardial infarctions during 1 h of submaximal exercise (treadmill running at 6.4 km/h at 10% grade). Long-duration exercise provoked a significant (ANOVA, all P < 0.01, means ± SD) increase in heart rate (1st min, 165.3 ± 15.6 vs. last min, 197.5 ± 21.5 beats/min) and significant reductions in high frequency (0.24 to 1.04 Hz) power (VT: 1st min, 3.7 ± 1.5 vs. last min, 1.0 ± 0.9 ln ms2), R-R interval range (1st min, 107.9 ± 38.3 vs. last min, 28.8 ± 13.2 ms), and R-R interval SD (1st min, 24.3 ± 7.7 vs. last min 6.3 ± 1.7 ms). Because endurance exercise training can increase cardiac vagal regulation, the studies were repeated after either a 10-wk exercise training ( n = 9) or a 10-wk sedentary period ( n = 7). After training was completed, long-duration exercise elicited smaller increases in heart rate (pretraining: 1st min, 156.0 ± 13.8 vs. last min, 189.6 ± 21.9 beats/min; and posttraining: 1st min, 149.8 ± 14.6 vs. last min, 172.7 ± 8.8 beats/min) and smaller reductions in heart rate variability (e.g., VT, pretraining: 1st min, 4.2 ± 1.7 vs. last min, 0.9 ± 1.1 ln ms2; and posttraining: 1st min, 4.8 ± 1.1 vs. last min, 2.0 ± 0.6 ln ms2). The response to long-duration exercise did not change in the sedentary animals. Thus the heart rate increase that accompanies long-duration exercise results, at least in part, from reductions in cardiac vagal regulation. Furthermore, exercise training attenuated these exercise-induced reductions in heart rate variability, suggesting maintenance of a higher cardiac vagal activity during exercise in the trained state.


2006 ◽  
Vol 18 (3) ◽  
pp. 282-289 ◽  
Author(s):  
Mark R. Forwood

Experiments to design physical activity programs that optimize their osteogenic potential are difficult to accomplish in humans. The aim of this article is to review the contributions that animal studies have made to knowledge of the loading conditions that are osteogenic to the skeleton during growth, as well as to consider to what extent animal studies fail to provide valid models of physical activity and skeletal maturation. Controlled loading studies demonstrate that static loads are ineffective, and that bone formation is threshold driven and dependent on strain rate, amplitude, and duration of loading. Only a few loading cycles per session are required, and distributed bouts are more osteogenic than sessions of long duration. Finally, animal models fail to inform us of the most appropriate ways to account for the variations in biological maturation that occur in our studies of children and adolescents, requiring the use of techniques for studying human growth and development.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1353 ◽  
Author(s):  
Cristina Nocella ◽  
Vittoria Cammisotto ◽  
Fabio Pigozzi ◽  
Paolo Borrione ◽  
Chiara Fossati ◽  
...  

The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals’ lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant–antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.


2009 ◽  
Vol 106 (2) ◽  
pp. 461-467 ◽  
Author(s):  
Zekine Lappalainen ◽  
Jani Lappalainen ◽  
Niku K. J. Oksala ◽  
David E. Laaksonen ◽  
Savita Khanna ◽  
...  

Regular exercise plays an important preventive and therapeutic role in oxidative stress-associated diseases such as diabetes and its complications. Thiol antioxidants including thioredoxin (TRX) and glutathione (GSH) have a crucial role in controlling cellular redox status. In this study, the effects of 8 wk of exercise training on brain TRX and GSH systems, and antioxidant enzymes were tested in rats with or without streptozotocin-induced diabetes. We found that in untrained animals, the levels of TRX-1 (TRX1) protein and activity, and thioredoxin-interacting protein (TXNip) were similar in diabetic and nondiabetic animals. Exercise training, however, increased TRX1 protein in nondiabetic animals without affecting TXNip levels, whereas diabetes inhibited the effect of training on TRX1 protein and also increased TXNip mRNA. In addition, the proportion of oxidized glutathione (GSSG) to total GSH was increased in animals with diabetes, indicating altered redox status and possibly increased oxidative stress. Glutathione peroxidase-1 (GPX1) levels were not affected by diabetes or exercise training, although diabetes increased total GPX activity. Both diabetes and exercise training decreased glutathione reductase (GRD) activity and cytosolic superoxide dismutase (Cu,Zn-SOD) levels. Nevertheless, diabetes or training had no effect on Cu,Zn-SOD mRNA, Mn-SOD protein, total SOD activity, or catalase mRNA, protein, or activity. Our findings suggest that exercise training increases TRX1 levels in brain without a concomitant rise in TXNip, and that experimental diabetes is associated with an incomplete TRX response to training. Increased oxidative stress may be both a cause and a consequence of perturbed antioxidant defenses in the diabetic brain.


Sign in / Sign up

Export Citation Format

Share Document