Reductions in muscle coactivation and metabolic cost during visuomotor adaptation

2014 ◽  
Vol 112 (9) ◽  
pp. 2264-2274 ◽  
Author(s):  
Helen J. Huang ◽  
Alaa A. Ahmed

We often have to adapt our movements as we interact with a variety of objects in various conditions on a daily basis. Evidence suggests that motor adaptation relies on a process that minimizes error and effort; however, much of this evidence involved adapting to novel dynamics with physical perturbations to counteract. To examine the generality of the process of minimizing error and effort during motor adaptation, we used a visuomotor adaptation task that did not involve dynamic perturbations. We investigated the time courses of muscle activity, coactivation, and metabolic cost as subjects reached to a target with a visuomotor rotation. We wanted to determine whether subjects would modulate muscle activity, coactivation, and metabolic cost during a visuomotor adaptation task. Interestingly, subjects increased muscle coactivation early during visuomotor adaptation when there were large cursor-trajectory errors but no physical perturbations to reject. As adaptation progressed, muscle activity and coactivation decreased. Metabolic cost followed a similar time course. When the perturbation was removed, typical after-effects were observed: trajectory error increased and then was reduced quickly. This was accompanied by increases in muscle activity, coactivation, and metabolic cost, along with subsequent rapid reductions. These results demonstrate that subjects modulate muscle activity, coactivation, and metabolic cost similarly across different forms of motor adaptation. Overall, our findings suggest that minimization of error and effort may be a general process underlying various forms of motor adaptation.

2009 ◽  
Vol 101 (5) ◽  
pp. 2263-2269 ◽  
Author(s):  
Aymar de Rugy ◽  
Mark R. Hinder ◽  
Daniel G. Woolley ◽  
Richard G. Carson

Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ∼20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.


2014 ◽  
Vol 111 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Helen J. Huang ◽  
Alaa A. Ahmed

The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older ( n = 11, 73.8 ± 5.6 yr) and young ( n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation.


2015 ◽  
Vol 114 (2) ◽  
pp. 969-977 ◽  
Author(s):  
David M. Huberdeau ◽  
Adrian M. Haith ◽  
John W. Krakauer

The term savings refers to faster motor adaptation upon reexposure to a previously experienced perturbation, a phenomenon thought to reflect the existence of a long-term motor memory. It is commonly assumed that sustained practice during the first perturbation exposure is necessary to create this memory. Here we sought to test this assumption by determining the minimum amount of experience necessary during initial adaptation to a visuomotor rotation to bring about savings the following day. Four groups of human subjects experienced 2, 5, 10, or 40 trials of a counterclockwise 30° cursor rotation during reaching movements on one day and were retested the following day to assay for savings. Groups that experienced five trials or more of adaptation on day 1 showed clear savings on day 2. Subjects in all groups learned significantly more from the first rotation trial on day 2 than on day 1, but this learning rate advantage was maintained only in groups that had reached asymptote during the initial exposure. Additional experiments revealed that savings occurred when the magnitude, but not the direction, of the rotation differed across exposures, and when a 5-min break, rather than an overnight one, separated the first and second exposure. The overall pattern of savings we observe across conditions can be explained as rapid retrieval of the state of learning attained during the first exposure rather than as modulation of sensitivity to error. We conclude that a long-term memory for compensating for a perturbation can be rapidly acquired and rapidly retrieved.


2019 ◽  
Vol 121 (6) ◽  
pp. 2112-2125 ◽  
Author(s):  
A. Mamlins ◽  
T. Hulst ◽  
O. Donchin ◽  
D. Timmann ◽  
J. Claassen

Previous studies have shown that cerebellar transcranial direct current stimulation (tDCS) leads to faster adaptation of arm reaching movements to visuomotor rotation and force field perturbations in healthy subjects. The first aim of the present study was to confirm a stimulation-dependent effect on motor adaptation. Second, we investigated whether tDCS effects differ depending on onset, that is, before or at the beginning of the adaptation phase. A total of 120 healthy and right-handed subjects (60 women, mean age 23.2 ± SD 2.7 yr, range 18–31 yr) were tested. Subjects moved a cursor with a manipulandum to one of eight targets presented on a vertically orientated screen. Three baseline blocks were followed by one adaptation block and three washout blocks. Sixty subjects did a force field adaptation task (FF), and 60 subjects did a visuomotor adaptation task (VM). Equal numbers of subjects received anodal, cathodal, or sham cerebellar tDCS beginning either in the third baseline block or at the start of the adaptation block. In FF and VM, tDCS and the onset of tDCS did not show a significant effect on motor adaptation (all P values >0.05). We were unable to support previous findings of modulatory cerebellar tDCS effects in reaching adaptation tasks in healthy subjects. Prior to possible application in patients with cerebellar disease, future experiments are needed to determine which tDCS and task parameters lead to robust tDCS effects. NEW & NOTEWORTHY Transcranial direct current stimulation (tDCS) is a promising tool to improve motor learning. We investigated whether cerebellar tDCS improves motor learning in force field and visuomotor tasks in healthy subjects and what influence the onset of stimulation has. We did not find stimulation effects of tDCS or an effect of onset of stimulation. A reevaluation of cerebellar tDCS in healthy subjects and at the end of the clinical potential in cerebellar patients is demanded.


2020 ◽  
Vol 1 ◽  
Author(s):  
Sarah H. E. M. Voets ◽  
Muriel T. N. Panouilleres ◽  
Ned Jenkinson

AbstractMotor adaptation is a process by which the brain gradually reduces error induced by a predictable change in the environment, e.g., pointing while wearing prism glasses. It is thought to occur via largely implicit processes, though explicit strategies are also thought to contribute. Research suggests a role of the cerebellum in the implicit aspects of motor adaptation. Using non-invasive brain stimulation, we sought to investigate the involvement of the cerebellum in implicit motor adaptation in healthy participants. Inhibition of the cerebellum was attained through repetitive transcranial magnetic stimulation (rTMS), after which participants performed a visuomotor-rotation task while using an explicit strategy. Adaptation and aftereffects of the TMS group showed no difference in behaviour compared to a Sham stimulation group, therefore this study did not provide any further evidence of a specific role of the cerebellum in implicit motor adaptation. However, our behavioral findings replicate those in the seminal study by Mazzoni and Krakauer (2006).


Reproduction ◽  
2000 ◽  
pp. 327-330 ◽  
Author(s):  
RJ Lucas ◽  
JA Stirland ◽  
YN Mohammad ◽  
AS Loudon

The role of the circadian clock in the reproductive development of Syrian hamsters (Mesocricetus auratus was examined in wild type and circadian tau mutant hamsters reared from birth to 26 weeks of age under constant dim red light. Testis diameter and body weights were determined at weekly intervals in male hamsters from 4 weeks of age. In both genotypes, testicular development, subsequent regression and recrudescence exhibited a similar time course. The age at which animals displayed reproductive photosensitivity, as exhibited by testicular regression, was unrelated to circadian genotype (mean +/- SEM: 54 +/- 3 days for wild type and 59 +/- 5 days for tau mutants). In contrast, our studies revealed a significant impact of the mutation on somatic growth, such that tau mutants weighed 18% less than wild types at the end of the experiment. Our study reveals that the juvenile onset of reproductive photoperiodism in Syrian hamsters is not timed by the circadian system.


1999 ◽  
Vol 19 (6) ◽  
pp. 652-660 ◽  
Author(s):  
Jaroslaw Aronowski ◽  
Ki-Hyun Cho ◽  
Roger Strong ◽  
James C. Grotta

To determine the occurrence and time-course of presumably irreversible subcellular damage after moderate focal ischemia, rats were subjected to 1, 3, 6, 9, or 24 hours of permanent unilateral middle cerebral and common carotid occlusion or 3 hours of reversible occlusion followed by 3, 6, or 21 hours of reperfusion. The topography and the extent of damage were analyzed with tetrazolium staining and immunoblot using an antibody capable of detecting breakdown of neurofilament. Neurofilament proteolysis began after 3 hours in the infarct core but was still incomplete in penumbral regions up to 9 hours. Similarly, tetrazolium-staining abnormalities were observed in the core of 50% of animals after 3 hours of ischemia. At 6 hours of permanent ischemia, infarct volume was maximal, and further prolongation of occlusion to 9 or 24 hours did not increase abnormal tetrazolium staining. In contrast to permanent ischemia and in agreement with the authors' previous demonstration of “reperfusion injury” in this model, prolongation of reperfusion from 3 hours to 6 and 21 hours after 3 hours of reversible occlusion gradually augmented infarct volume by 203% and 324%, respectively. Neurofilament proteolysis initiated approximately 3 hours after ischemia was quantitatively greatest in the core and extended during reperfusion to incorporate penumbra with a similar time course to that of tetrazolium abnormalities. These data demonstrate that, at least as measured by neurofilament breakdown and mitochondrial failure, extensive cellular damage is not present in penumbral regions for up to 9 hours, suggesting the potential for rescuing these regions by appropriate and timely neuroprotective strategies.


Author(s):  
Carolin Schilpp ◽  
Robin Lochbaum ◽  
Peter Braubach ◽  
Danny Jonigk ◽  
Manfred Frick ◽  
...  

AbstractTGF-β1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-β1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-β1 activates TGF-β1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-β1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-β1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-β1 sensing and showed that TGF-β1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.


1992 ◽  
Vol 99 (3) ◽  
pp. 317-338 ◽  
Author(s):  
L Reuss ◽  
B Simon ◽  
C U Cotton

The mechanisms of apparent streaming potentials elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution were studied by assessing the time courses of: (a) the change in transepithelial voltage (Vms). (b) the change in osmolality at the cell surface (estimated with a tetrabutylammonium [TBA+]-selective microelectrode, using TBA+ as a tracer for sucrose), and (c) the change in cell impermeant solute concentration ([TMA+]i, measured with an intracellular double-barrel TMA(+)-selective microelectrode after loading the cells with TMA+ by transient permeabilization with nystatin). For both sucrose addition and removal, the time courses of Vms were the same as the time courses of the voltage signals produced by [TMA+]i, while the time courses of the voltage signals produced by [TBA+]o were much faster. These results suggest that the apparent streaming potentials are caused by changes of [NaCl] in the lateral intercellular spaces, whose time course reflects the changes in cell water volume (and osmolality) elicited by the alterations in apical solution osmolality. Changes in cell osmolality are slow relative to those of the apical solution osmolality, whereas lateral space osmolality follows cell osmolality rapidly, due to the large surface area of lateral membranes and the small volume of the spaces. Analysis of a simple mathematical model of the epithelium yields an apical membrane Lp in good agreement with previous measurements and suggests that elevations of the apical solution osmolality elicit rapid reductions in junctional ionic selectivity, also in good agreement with experimental determinations. Elevations in apical solution [NaCl] cause biphasic transepithelial voltage changes: a rapid negative Vms change of similar time course to that of a Na+/TBA+ bi-ionic potential and a slow positive Vms change of similar time course to that of the sucrose-induced apparent streaming potential. We conclude that the Vms changes elicited by addition of impermeant solute to the apical bathing solution are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow from the cells to the apical bathing solution and from the lateral intercellular spaces to the cells. Our results do not support the notion of junctional solute-solvent coupling during transepithelial osmotic water flow.


1997 ◽  
Vol 110 (5) ◽  
pp. 579-589 ◽  
Author(s):  
Riccardo Olcese ◽  
Ramón Latorre ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Δ(6–46) K+ channel and in the nonconducting mutant (Shaker H4-Δ(6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547–556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to −90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non–slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011–1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.


Sign in / Sign up

Export Citation Format

Share Document