scholarly journals Differentiation of Visceral and Cutaneous Pain in the Human Brain

2003 ◽  
Vol 89 (6) ◽  
pp. 3294-3303 ◽  
Author(s):  
Irina A. Strigo ◽  
Gary H. Duncan ◽  
Michel Boivin ◽  
M. Catherine Bushnell

The widespread convergence of information from visceral, cutaneous, and muscle tissues onto CNS neurons invites the question of how to identify pain as being from the viscera. Despite referral of visceral pain to cutaneous areas, individuals regularly distinguish cutaneous and visceral pain and commonly have contrasting behavioral reactions to each. Our study addresses this dilemma by directly comparing human neural processing of intensity-equated visceral and cutaneous pain. Seven subjects underwent fMRI scanning during visceral and cutaneous pain produced by balloon distention of the distal esophagus and contact heat on the midline chest. Stimulus intensities producing nonpainful and painful sensations, interleaved with rest periods, were presented in each functional run. Analyses compared painful to nonpainful conditions. A similar neural network, including secondary somatosensory and parietal cortices, thalamus, basal ganglia, and cerebellum, was activated by visceral and cutaneous painful stimuli. However, cutaneous pain evoked higher activation bilaterally in the anterior insular cortex. Further, cutaneous but not esophageal pain activated ventrolateral prefrontal cortex, despite higher affective scores for visceral pain. Visceral but not cutaneous pain activated bilateral inferior primary somatosensory cortex, bilateral primary motor cortex, and a more anterior locus within anterior cingulate cortex. Our results reveal a common cortical network subserving cutaneous and visceral pain that could underlie similarities in the pain experience. However, we also observed differential activation patterns within insular, primary somatosensory, motor, and prefrontal cortices that may account for the ability to distinguish visceral and cutaneous pain as well as the differential emotional, autonomic and motor responses associated with these different sensations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lukas Brenner ◽  
Leah Zerlin ◽  
Linette Liqi Tan

AbstractVisceral pain is a highly complex experience and is the most common pathological feature in patients suffering from inflammatory gastrointestinal disorders. Whilst it is increasingly recognized that aberrant neural processing within the gut-brain axis plays a key role in development of neurological symptoms, the underlying mechanisms remain largely unknown. Here, we investigated the cortical activation patterns and effects of non-invasive chemogenetic suppression of cortical activity on visceral hypersensitivity and anxiety-related phenotypes in a well-characterized mouse model of acute colitis induced by dextran sulfate sodium (DSS). We found that within the widespread cortical network, the mid-cingulate cortex (MCC) was consistently highly activated in response to innocuous and noxious mechanical stimulation of the colon. Furthermore, during acute experimental colitis, impairing the activity of the MCC successfully alleviated visceral hypersensitivity, anxiety-like behaviors and visceromotor responses to colorectal distensions (CRDs) via downregulating the excitability of the posterior insula (PI), somatosensory and the rostral anterior cingulate cortices (rACC), but not the prefrontal or anterior insula cortices. These results provide a mechanistic insight into the central cortical circuits underlying painful visceral manifestations and implicate MCC plasticity as a putative target in cingulate-mediated therapies for bowel disorders.


2021 ◽  
pp. 002076402199748
Author(s):  
Debanjan Banerjee ◽  
Velmarini Vasquez ◽  
Marisin Pecchio ◽  
Muralidhar L Hegde ◽  
Rao Ks Jagannatha ◽  
...  

Background: Humans are neurobiologically wired for touch receptivity. Social touch is a common and mutual way of expressing affection, care, and intimacy. From an evolutionary perspective, affiliative and affectionate touch are considered necessary for social and cognitive development throughout life-stages and across species. The emergence of the COVID-19 pandemic as a public health threat has mandated social distancing as a measure to contain the global outbreak. Travel restrictions, lockdown, and quarantine have led to separation and segregation, giving rise to social touch deprivation that might have adverse biopsychosocial consequences. Methods: Affective touch has rarely been discussed within the purview of social psychiatry. We attempted to review the neurobiological, social, and behavioural correlates of social and sexual touch, as well as the neurophysiological models involved. Results: The unmyelinated peripheral C-fibre afferents projecting to insular cortex and somatosensory areas form the prime pathway for affective touch. ‘Top-down’ modulation via the periaqueductal grey area, rostroventral medulla and sub-cortical structures, and ‘Bottom-up’ approach via the dorsal horn of the spine form the two theoretical models of ‘social touch’ system. The mu - opioid receptor (MOR) implicated in the Brain Opioid Theory of Social Attachment (BOTSA) and social neuropeptides like oxytocin and vasopressin are the primary neurochemical substrates involved. Sexual intimacy involves other neurotransmitters, with increased oxytocin activity in the limbic structures, Nucleus Accumbens, Anterior Cingulate, and Prefrontal Cortex. The discrimination and amalgamation of touch senses, their affiliative value and emotional valence in humans are based on a complex interplay between psychobiological, environmental, and personal factors. Conclusion: The neurobehavioral and emotional effects of ‘touch hunger’ and strategies to mitigate it during COVID-19 are discussed in the context of psychoneuroimmunity and stress.


2021 ◽  
Author(s):  
Du Zhang ◽  
Xiaoxiao Wang ◽  
Yanming Wang ◽  
Benedictor Alexander Nguchu ◽  
Zhoufang Jiang ◽  
...  

The topological representation is a fundamental property of human primary sensory cortices. The human gustatory cortex (GC) responds to the five basic tastes: bitter, salty, sweet, umami, and sour. However, the topological representation of the human gustatory cortex remains controversial. Through functional magnetic resonance imaging(fMRI) measurements of human responses to the five basic tastes, the current study aimed to delineate the taste representations within the GC. During the scanning, the volunteers tasted solutions of the five basic tastes, then washed their mouths with the tasteless solution. The solutions were then sucked from the volunteers' mouths, eliminating the action of swallowing. The results showed that the bilateral mid-insula activated most during the taste task, and the active areas were mainly in the precentral and central insular sulcus. However, the regions responding to the five basic tastes are substantially overlapped, and the analysis of contrasts between each taste response and the averaged response to the remaining tastes does not report any significant results. Furthermore, in the gustatory insular cortex, the multivariate pattern analysis (MVPA) was unable to distinguish the activation patterns of the basic tastes, suggesting the possibility of weakly clustered distribution of the taste-preference neural activities in the human insular cortex. In conclusion, the presented results suggest overlapping representations of the basic tastes in the human gustatory insular cortex.


1991 ◽  
Vol 65 (2) ◽  
pp. 188-202 ◽  
Author(s):  
K. Shima ◽  
K. Aya ◽  
H. Mushiake ◽  
M. Inase ◽  
H. Aizawa ◽  
...  

1. Single-unit activity in the cingulate cortex of the monkey was recorded during the performance of sensorially (visual, auditory, or tactile) triggered or self-paced forelimb key press movements. 2. Microelectrodes were inserted into the broad rostrocaudal expanse of the cingulate cortex, including the upper and lower banks of the cingulate sulcus and the hemispheric medial wall of the cingulate gyrus. 3. A total of 1,042 task-related neurons were examined, the majority of which were related to the execution of the key press movements. In greater than 60% of them, the movement-related activity preceded the activity in the distal flexor muscles. 4. The movement-related neurons were distributed, in two foci, in the posterior and anterior parts of the cingulate cortex, both including the upper and lower banks of the cingulate sulcus. The posterior focus was found to largely overlap the area projecting to the forelimb area of the primary motor cortex by the use of the horseradish peroxidase (HRP) method. 5. About 40% of the cingulate cortical neurons showed equimagnitude responses during the signal-triggered and self-paced movements. The neurons exhibiting a selective or differential response to the self-paced motor task were more frequently observed in the anterior than in the posterior cingulate cortex. 6. The long-lead type of changes in activity, ranging from 500 ms to 2 s, were observed mainly before the self-paced and, much less frequently, before the triggered movements. They were particularly abundant in the anterior cingulate cortex. 7. Only a few of the neurons showed activity time-locked to the onset of the sensory signals. 8. These observations indicate that the anterior and posterior parts of the cingulate cortex are distinct entities participating in the performance of limb movements, even if the movements are simple, such as those in this study.


2018 ◽  
Vol 43 (11) ◽  
pp. 1122-1130 ◽  
Author(s):  
Baraa K. Al-Khazraji ◽  
J. Kevin Shoemaker

The autonomic nervous system elicits continuous beat-by-beat homeostatic adjustments to cardiovascular control. These modifications are mediated by sensory inputs (e.g., baroreceptors, metaboreceptors, pulmonary, thermoreceptors, and chemoreceptors afferents), integration at the brainstem control centres (i.e., medulla), and efferent autonomic neural outputs (e.g., spinal, preganglionic, and postganglionic pathways). However, extensive electrical stimulation and functional imaging research show that the brain’s higher cortical regions (e.g., insular cortex, medial prefrontal cortex, anterior cingulate cortex) partake in homeostatic regulation of the cardiovascular system at rest and during exercise. We now appreciate that these cortical areas form a network, namely the “cortical autonomic network” (CAN), which operate as part of a larger central autonomic network comprising 2-way communication of cortical and subcortical areas to exert autonomic influence. Interestingly, differential patterns of CAN activity and ensuing cardiovascular control are present in disease states, thereby highlighting the importance of considering the role of CAN as an integral aspect of cardiovascular regulation in health and disease. This review discusses current knowledge on human cortical autonomic activation during volitional exercise, and the role of exercise training on this activation in both health and disease.


2021 ◽  
pp. 158-168
Author(s):  
Jeremy K. Cutsforth-Gregory

The autonomic nervous system is involved in many important unconscious body functions. It is critical for maintaining the internal environment in response to changes in the external environment. The autonomic nervous system consists of peripheral components (sympathetic and parasympathetic nerves and ganglia) and central components (ventrolateral medulla, nucleus ambiguus, nucleus of the solitary tract, periaqueductal gray, anterior cingulate gyrus, insular cortex, amygdala, and hypothalamus). This chapter briefly reviews the anatomy and functional components of the autonomic nervous system and several anatomical clinical correlations.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Myeounghoon Cha ◽  
Songyeon Choi ◽  
Kyeongmin Kim ◽  
Bae Hwan Lee

AbstractNeuropathic pain induced by a nerve injury can lead to chronic pain. Recent studies have reported hyperactive neural activities in the nociceptive-related area of the brain as a result of chronic pain. Although cerebral activities associated with hyperalgesia and allodynia in chronic pain models are difficult to represent with functional imaging techniques, advances in manganese (Mn)-enhanced magnetic resonance imaging (MEMRI) could facilitate the visualization of the activation of pain-specific neural responses in the cerebral cortex. In order to investigate the alleviation of pain nociception by mammalian target of rapamycin (mTOR) modulation, we observed cerebrocortical excitability changes and compared regional Mn2+ enhancement after mTOR inhibition. At day 7 after nerve injury, drugs were applied into the intracortical area, and drug (Vehicle, Torin1, and XL388) effects were compared within groups using MEMRI. Therein, signal intensities of the insular cortex (IC), primary somatosensory cortex of the hind limb region, motor cortex 1/2, and anterior cingulate cortex regions were significantly reduced after application of mTOR inhibitors (Torin1 and XL388). Furthermore, rostral-caudal analysis of the IC indicated that the rostral region of the IC was more strongly associated with pain perception than the caudal region. Our data suggest that MEMRI can depict pain-related signal changes in the brain and that mTOR inhibition is closely correlated with pain modulation in chronic pain rats.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yarui Wei ◽  
Ling Mei ◽  
Xiaojing Long ◽  
Xiaoxiao Wang ◽  
Yanjun Diao ◽  
...  

Background. Clinical and experimental data suggest that ultrasound stimulation (US) at acupoints can produce similar effective treatment compared to manual acupuncture (MA). Although the brain activation to MA at acupoints is investigated by numerous studies, the brain activation to US at acupoints remains unclear. Methods. In the present work, we employed task state functional magnetic resonance imaging (fMRI) to explore the human brain’s activation to US and MA at ST 36 (Zusanli) which is one of the most commonly used acupoints in acupuncture-related studies. 16 healthy subjects underwent US and MA procedures in an interval of more than one week. On-off block design stimulation was used for the recording of fMRI-related brain patterns. Results. Both US and MA at ST 36 produced activations in somatosensory and limbic/paralimbic regions (postcentral gyrus, insula, middle prefrontal cortex, and anterior cingulate cortex). Only US at ST 36 produced a significant signal increase in the inferior parietal lobule and decrease in the posterior cingulate cortex, whereas MA at ST 36 produced a significant signal increase in the lentiform nucleus and cerebellum. Conclusions. Our results indicate that US may be a possible noninvasive alternative method to MA due to its similar activation patterns.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Saheba Nanda ◽  
Krishna Priya ◽  
Tasmia Khan ◽  
Puja Patel ◽  
Heela Azizi ◽  
...  

Brain imaging studies have identified multiple neuronal networks and circuits in the brain with altered functioning in patients with schizophrenia. These include the hippocampo-cerebello-cortical circuit, the prefrontal-thalamic-cerebellar circuit, functional integration in the bilateral caudate nucleus, and the salience network consisting of the insular cortex, parietal anterior cingulate cortex, and striatum, as well as limbic structures. Attributing psychotic symptoms to any of these networks in schizophrenia is confounded by the disruption of these networks in schizophrenic patients. Such attribution can be done with isolated dysfunction in any of these networks with concurrent psychotic symptoms. We present the case of a patient who presents with new-onset hallucinations and a stroke in brain regions similar to the salience network (insular cortex, parietal cortex, and striatum). The implication of these findings in isolating psychotic symptoms of the salience network is discussed.


Sign in / Sign up

Export Citation Format

Share Document