Physical Activity and Exercise in the Regulation of Human Adipose Tissue Physiology

2012 ◽  
Vol 92 (1) ◽  
pp. 157-191 ◽  
Author(s):  
Dylan Thompson ◽  
Fredrik Karpe ◽  
Max Lafontan ◽  
Keith Frayn

Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic “structural” changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.

2000 ◽  
Vol 59 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Yves Chilliard ◽  
Anne Ferlay ◽  
Yannick Faulconnier ◽  
Muriel Bonnet ◽  
Jacques Rouel ◽  
...  

Changes in the amount and metabolism of adipose tissue (AT) occur in underfed ruminants, and are amplified during lactation, or in fat animals. The fat depot of the tail of some ovine breeds seems to play a particular role in adaptation to undernutrition; this role could be linked to its smaller adipocytes and high sensitivity to the lipolytic effect of catecholamines. Glucocorticoids and growth hormone probably interact to induce teleophoretic changes in the AT responses to adenosine and catecholamines during lactation. Fat mobilization in dry ewes is related both to body fatness and to energy balance. The in vivo β-adrenergic lipolytic potential is primarily related to energy balance, whereas basal postprandial plasma non-esterified fatty acids (NEFA) are related to body fatness, and preprandial plasma NEFA is the best predictor of the actual body lipid loss. Several mechanisms seem to be aimed at avoiding excessive fat mobilization and/or insuring a return to the body fatness homeostatic set point. As well as providing the underfed animal with fatty acids as oxidative fuels, AT acts as an endocrine gland. The yield of leptin by ruminant AT is positively related to body fatness, decreased by underfeeding, β-adrenergic stimulation and short day length, and increased by insulin and glucocorticoids. This finding suggests that the leptin chronic (or acute) decrease in lean (or underfed respectively) ruminants is, as in rodents, a signal for endocrine, metabolic and behavioural adaptations aimed at restoring homeostasis.


1999 ◽  
Vol 58 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Keith N. Frayn

The metabolism of white adipose tissue is regulated by many factors, including hormones and substrates delivered in the blood, the activity of the autonomic nervous system and the rate of flow of blood through the tissue. An integrated view of adipose tissue metabolism can only be gained, therefore, from studies in vivo. Of the various techniques available for studying adipose tissue metabolism in vivo, the measurement of arterio-venous differences offers some unique possibilities. In human subjects this technique has been performed mostly by catheterization of the venous drainage of the subcutaneous abdominal depot. Studies using this technique indicate that adipose tissue has an active pattern of metabolism, responding rapidly to meal ingestion by suppressing the release of non-esterified fatty acids, or to exercise with an increase in fat mobilization. Adipose tissue blood flow may also change rapidly in these situations; for instance, it increases markedly after a meal, potentially increasing the delivery of triacylglycerol to the enzyme lipoprotein lipase (EC 3.1.1.34) for hydrolysis. During exercise, there is evidence that adipose tissue blood flow does not increase sufficiently to allow delivery of all the fatty acids released into the systemic circulation. The various adipose tissue depots have their own characteristic metabolic properties, although in human subjects these are difficult to study with the arterio-venous difference technique. A combination of tracer infusion with selective catheterization allows measurements of leg, splanchnic and non-splanchnic upper-body fat mobilization and triacylglycerol clearance. Development of such techniques may open up new possibilities in the future for obtaining an integrated picture of adipose tissue function and its depot-specific variations.


Diabetes Care ◽  
2015 ◽  
pp. dc142216 ◽  
Author(s):  
Jaana J. Karjalainen ◽  
Antti M. Kiviniemi ◽  
Arto J. Hautala ◽  
Olli-Pekka Piira ◽  
E. Samuli Lepojärvi ◽  
...  

2001 ◽  
Vol 19 (3) ◽  
pp. 447-457 ◽  
Author(s):  
Carl Foster ◽  
Khristy Cadwell ◽  
Ben Crenshaw ◽  
Mehgan Dehart-Beverley ◽  
Stefanie Hatcher ◽  
...  

2015 ◽  
Vol 49 (15) ◽  
pp. 972-973 ◽  
Author(s):  
Jonatan R Ruiz ◽  
Borja Martinez-Tellez ◽  
Guillermo Sanchez-Delgado ◽  
Concepcion M Aguilera ◽  
Angel Gil

2001 ◽  
Vol 4 (2b) ◽  
pp. 561-568 ◽  
Author(s):  
Patrck Ritz

AbstractObjectives:(i) to describe energy and macronutrient requirements in healthy and diseased elderly patients from knowledge acquired about the age-related changes in energy balance (ii) to describe changes in body composition and the consequences of physical activity and exercise programs.Results:Aging in individuals considered healthy is associated with a reduction in muscle mass and strength (with consequences on autonomy), and an increase in fat mass mainly in the central area, the latter might increase the risk of cardiovascular disease. Body composition changes can be seen as a positive energy (fat) balance. The reduced fat-free mass is responsible for a low resting metabolic rate. Therefore, energy requirements are reduced all the more since physical activity is decreased. A simple means for calculating individuals' energy requirements from estimated resting metaboc rate and physical activity is not yet available in a validated form and is much required. Protein requirements are still debated.Exercise programs can be implemented for increasing muscle mass and strength (resistance training) or for improving aerobic fitness and reducing fat mass (endurance exercise). It is not yet clear whether structured exercise programs or spontaneous physical activity have similar advantages. It is not known in which cases resistance, endurance, or a combination of both exercises should be recommended. The consequences of physical activity and exercise programs on energy and macronutrient requirements is not clear.Diseased elderly persons are prone to malnutrition which impairs clinical and functional outcome. Malnutrition is the result of an energy intake inadequate to match energy requirements. Literature is very short of data on energy requirements in diseased elderly persons, who are under the complex influences of stress (increasing resting energy requirements), reduced body mass and physical activity (reducing energy requirements), plus potential effects of drugs. Almost nothing is known about macronutrient requirements.Conclusions:Further studies are required to enable calculations of energy and macronutrient requirements of individuals, especially diseased. More work has to be done to understand the energy imbalance in the elderly (healthy and diseased). Careful evaluations of physical activity and exercise programs are necessary.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristoffer Jensen Kolnes ◽  
Maria Houborg Petersen ◽  
Teodor Lien-Iversen ◽  
Kurt Højlund ◽  
Jørgen Jensen

In obesity, excessive abdominal fat, especially the accumulation of visceral adipose tissue (VAT), increases the risk of metabolic disorders, such as type 2 diabetes mellitus (T2DM), cardiovascular disease, and non-alcoholic fatty liver disease. Excessive abdominal fat is associated with adipose tissue dysfunction, leading to systemic low-grade inflammation, fat overflow, ectopic lipid deposition, and reduced insulin sensitivity. Physical activity is recommended for primary prevention and treatment of obesity, T2DM, and related disorders. Achieving a stable reduction in body weight with exercise training alone has not shown promising effects on a population level. Because fat has a high energy content, a large amount of exercise training is required to achieve weight loss. However, even when there is no weight loss, exercise training is an effective method of improving body composition (increased muscle mass and reduced fat) as well as increasing insulin sensitivity and cardiorespiratory fitness. Compared with traditional low-to-moderate-intensity continuous endurance training, high-intensity interval training (HIIT) and sprint interval training (SIT) are more time-efficient as exercise regimens and produce comparable results in reducing total fat mass, as well as improving cardiorespiratory fitness and insulin sensitivity. During high-intensity exercise, carbohydrates are the main source of energy, whereas, with low-intensity exercise, fat becomes the predominant energy source. These observations imply that HIIT and SIT can reduce fat mass during bouts of exercise despite being associated with lower levels of fat oxidation. In this review, we explore the effects of different types of exercise training on energy expenditure and substrate oxidation during physical activity, and discuss the potential effects of exercise training on adipose tissue function and body fat distribution.


1997 ◽  
Vol 14 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Julio A. Ferreira

This paper presents a comprehensive review of the factors influencing obesity and the characteristics of adipose tissue. The author describes how adipose cells form and how cellulite develops, also explaining how liposculpture removal of excess adipose tissue can improve lymphatic return and the appearance of the skin. The author presents liposculpturing as part of an integrated approach to the treatment of obesity. By decreasing fat mass, liposculpturing helps improve body image and self esteem and physical activity increases.


1986 ◽  
Vol 64 (5) ◽  
pp. 609-614 ◽  
Author(s):  
Stephanie W. Y. Ma ◽  
David O. Foster

The net in vivo uptake or release of free fatty acids glycerol, glucose, lactate, and pyruvate by the interscapular brown adipose tissue (IBAT) of barbital-anesthetized, cold-acclimated rats was determined from measurements of plasma arteriovenous concentration differences across IBAT and tissue blood flow. Measurements were made without stimulation of the tissue and also during submaximal and maximal stimulation by infused noradrenaline (NA), the physiological activator of BAT thermogenesis. There was no appreciable uptake of glucose or release of fatty acids and glycerol by the nonstimulated tissue. At both levels of stimulation there was significant uptake of glucose (1.7 and 2.0 μmol/min) and release of glycerol (0.9 and 1.2 μmol/min), but only at maximal stimulation was there significant release of fatty acids (1.9 μmol/min). Release of lactate and pyruvate accounted for 33% of the glucose taken up at submaximal stimulation and 88% at maximal stimulation. By calculation, the remainder of the glucose taken up was sufficient to have fueled about 12% of the thermogenesis at submaximal stimulation, but only about 2% at maximal stimulation. As estimated from the rate of glycerol release, the rate of triglyceride hydrolysis was sufficient at submaximal stimulation to fuel IBAT thermogenesis entirely with the resulting fatty acids, but it was not sufficient to do so at maximal stimulation when some of the fatty acid was exported. It is suggested that at maximal NA-induced thermogenesis a portion of lipolysis proceeded only to the level of mono- and di-glycerides with the result that glycerol release did not fully reflect the rate of fatty acid formation. Both in absolute terms and in relation to the export of glycerol the in vivo export of fatty acids from the adipocytes of IBAT was much less than is observed with brown adipocytes in vitro.


Sign in / Sign up

Export Citation Format

Share Document