On-line X-ray diffraction for quantitative phase analysis: Application in the Portland cement industry

2001 ◽  
Vol 16 (2) ◽  
pp. 71-80 ◽  
Author(s):  
Nicola V. Y. Scarlett ◽  
Ian C. Madsen ◽  
Con Manias ◽  
David Retallack

The aim of this work was to design, construct, install, and commission an on-line, X-ray diffraction (XRD) analyzer capable of continuously monitoring phase abundances for use in process plant control. This has been achieved through a joint project between CSIRO Minerals and Fuel & Combustion Technology Pty. Ltd. with an instrument designed for use in a Portland cement manufacturing plant. Key factors in tailoring such an instrument to the cement industry were (i) the handling and presentation of a dry sample and (ii) the development of an analytical method suitable for the complex suite of phases contained within Portland cement. The instrument incorporates continuous flow of sample through the diffractometer using a purpose-built sample presentation stage. The XRD data are collected simultaneously using a wide range (120° 2θ) position sensitive detector, thus enabling rapid collection of the full diffraction pattern. The data are then analyzed using a Rietveld analysis method to obtain a quantitative estimate of each of the phases present. The instrument is controlled by a PC linked to the diffractometer through a purpose built interface. The phase abundance information is then transmitted to the central computer in the cement plant where it can be used for the control of mill parameters such as temperature and retention times as well as gypsum feed rate.

2009 ◽  
Vol 24 (2) ◽  
pp. 112-115 ◽  
Author(s):  
C. Hesse ◽  
F. Goetz-Neunhoeffer ◽  
J. Neubauer ◽  
M. Braeu ◽  
P. Gaeberlein

Investigation into the early hydration of Portland cement was performed by in situ X-ray diffraction (XRD). Technical white cement was used for the XRD analysis on a D5000 diffractometer (Siemens). All diffraction patterns of the in situ measurement which were recorded up to 22 h of hydration at defined temperatures were analyzed by Rietveld refinement. The resulting phase composition was transformed with respect to free water and C-S-H leading to the total composition of the cement paste. The hydration reactions can be observed by dissolution of clinker phases as well as by the formation of the hydrate phases ettringite and portlandite. With increasing temperatures the reactions proceed faster. The formation of ettringite is directly influenced by the rate of dissolution of anhydrite and tricalcium aluminate (C3A). The beginning of the main period of hydration is marked by the start of portlandite formation. The experiments point out that a quantitative phase analysis of the cement hydration is feasible with standard laboratory diffractometers.


2014 ◽  
Vol 29 (S1) ◽  
pp. S102-S106 ◽  
Author(s):  
Joel N. O'Dwyer ◽  
James R. Tickner ◽  
Greg J. Roach

Rapid, on-line measurement of feedstock mineralogy is a highly attractive technology for the mineral processing industry. A Monte Carlo particle transport-based modelling technique has been developed to help design and predict the measurement performance of on-line energy-dispersive X-ray diffraction (EDXRD) analysers. The accuracy of the technique was evaluated by performing quantitative phase analysis on a suite of fifteen synthetic potash ore samples. The diffraction profile of each sample was measured with a laboratory EDXRD analyser and an equivalent profile was simulated in the Monte Carlo package. Linear regression analysis was used to determine the mineral abundances in each sample from both the measured and modelled profiles. Comparison of the results showed that the diffraction profiles and measurement accuracies obtained by simulation agree very well with the measured data.


2020 ◽  
Vol 68 (5) ◽  
pp. 524-531
Author(s):  
N. Werling ◽  
F. Dehn ◽  
F. Krause ◽  
A. Steudel ◽  
R. Schuhmann ◽  
...  

AbstractGeopolymers have the potential to function as an environmentally friendly substitute for ordinary Portland cement, with up to 80% less CO2 emission during production. The effect is best utilized for geopolymers prepared with amorphous silica instead of waterglass (Na2xSiyO2y+x) to adjust the Si:Al ratio. The reactivity of the precursors with the alkaline activator affects the final mineralogical properties of the binder. The purpose of the present study was to investigate the amount of different phases formed during geopolymerization and to understand the quantitative evolution of carbonation during geopolymer synthesis by determining the solubility of metakaolinite and amorphous SiO2 in NaOH at various concentrations. The solubility was studied by ICP-OES measurements. X-ray diffraction was used for qualitative and quantitative phase analysis of the geopolymers. The solubility of the precursors increased with calcination temperature of metakaolinite, reaction time for amorphous SiO2, and at higher NaOH concentrations. Partial dissolution resulted in free Na+, which is a source for the formation of carbonates in the geopolymers. Thermonatrite occurred prior to trona formation in all samples.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Jiba N. Dahal ◽  
Kalangala Sikkanther Syed Ali ◽  
Sanjay R. Mishra

Intermetallic compounds of Dy2Fe16Ga1−xNbx (x = 0.0 to 1.00) were synthesized by arc melting. Samples were investigated for structural, magnetic, and hyperfine properties using X-ray diffraction, vibration sample magnetometer, and Mossbauer spectrometer, respectively. The Rietveld analysis of room temperature X-ray diffraction data shows that all the samples were crystallized in Th2Fe17 structure. The unit cell volume of alloys increased linearly with an increase in Nb content. The maximum Curie temperature Tc ~523 K for x = 0.6 sample is higher than Tc = 153 K of Dy2Fe17. The saturation magnetization decreased linearly with increasing Nb content from 61.57 emu/g for x = 0.0 to 42.46 emu/g for x = 1.0. The Mössbauer spectra and Rietveld analysis showed a small amount of DyFe3 and NbFe2 secondary phases at x = 1.0. The hyperfine field of Dy2Fe16Ga1−xNbx decreased while the isomer shift values increased with the Nb content. The observed increase in isomer shift may have resulted from the decrease in s electron density due to the unit cell volume expansion. The substantial increase in Tc of thus prepared intermetallic compounds is expected to have implications in magnets used for high-temperature applications.


2021 ◽  
pp. 096739112199822
Author(s):  
Ahmed I Abou-Kandil ◽  
Gerhard Goldbeck

Studying the crystalline structure of uniaxially and biaxially drawn polyesters is of great importance due to their wide range of applications. In this study, we shed some light on the behaviour of PET and PEN under uniaxial stress using experimental and molecular modelling techniques. Comparing experiment with modelling provides insights into polymer crystallisation with extended chains. Experimental x-ray diffraction patterns are reproduced by means of models of chains sliding along the c-axis leading to some loss of three-dimensional order, i.e. moving away from the condition of perfect register of the fully extended chains in triclinic crystals of both PET and PEN. This will help us understand the mechanism of polymer crystallisation under uniaxial stress and the appearance of mesophases in some cases as discussed herein.


Sign in / Sign up

Export Citation Format

Share Document