High Accuracy Analysis of BPSG Thin Films on Silicon Wafers by X-Ray Wafer Analyzer

1993 ◽  
Vol 37 ◽  
pp. 229-234 ◽  
Author(s):  
H. Kohno ◽  
T. Arai ◽  
Y. Araki ◽  
R. Wilson

The wafer analyzer has been used to fulfil many applications needs in the semiconductor industry. The prominent features of the XRF method for the semiconductor industry are:analysis of many types of films, e.g., oxides, silicides and metallic alloys, and simultaneous analysis of film thickness and compositions.In the past, the analysis results of BPSG (Boron-doped Phospho-Silicate Glass) films, with thicknesses greater than 4000 Å, were reported. With the recent increased demand for larger scale and higher quality semiconductor devices (larger than 64 Mbit), more accurate analysis with high precision has been required.

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Yongqiang Pan ◽  
Huan Liu ◽  
Zhuoman Wang ◽  
Jinmei Jia ◽  
Jijie Zhao

SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Noritake Isomura ◽  
Keiichiro Oh-ishi ◽  
Naoko Takahashi ◽  
Satoru Kosaka

Thin films formed on surfaces have a large impact on the properties of materials and devices. In this study, a method is proposed using X-ray absorption spectroscopy to derive the film thickness of a thin film formed on a substrate using the spectral separation and logarithmic equation, which is a modified version of the formula used in electron spectroscopy. In the equation, the decay length in X-ray absorption spectroscopy is longer than in electron spectroscopy due to a cascade of inelastic scattering of electrons generated in a solid. The modification factor, representing a multiple of the decay length, was experimentally determined using oxidized Si and Cu with films of thickness 19 nm and 39 nm, respectively. The validity of the proposed method was verified, and the results indicated that the method can be used in the analysis of various materials with thin films.


2017 ◽  
Vol 70 (1) ◽  
pp. 26
Author(s):  
Rachel S. Brokenshire ◽  
Anthony Somers ◽  
Miao Chen ◽  
Angel A. J. Torriero

An experimental study on copper leaching from Cu1.85S thin films is presented, wherein copper extraction is quantitatively evaluated by changes in film thickness measured by white light interferometric profilometry. Changes in the film morphology and elemental composition, as assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, are used to confirm that the loss in film thickness is due to changes in the copper content and that the resultant film species is consistent with the mechanism of copper dissolution. The Cu1.85S thin films were synthesized by chemical bath deposition. The leaching behaviour of copper from the films was investigated in acidic ferric sulfate media at pHs 1, 2, and 3, and pH 1 at redox potentials of ~350–650 mV versus Ag/AgCl in 3 M KCl. The changes in the film thickness and copper sulfur ratio were shown to reflect copper dissolution behaviour from chalcocite. Leaching of the Cu1.85S films demonstrated a greater decrease in film thickness as pH decreased. In addition comparison of the order of reaction as a function of proton concentration in non-oxidative dissolution of Cu1.85S (0.06) and as a function of iron(iii) concentration in ferric oxidation of Cu1.85S (0.40) shows that the proton dissolution reaction is negligible. Leaching of the Cu1.85S films at redox potentials of up to ~476.4 mV versus Ag/AgCl in 3 M KCl produced covellite and demonstrated greater decreases in film thickness with increases in the redox potential. Leaching of the films above ~476.4 mV resulted in the formation of spionkopite and demonstrated a much lesser decrease in film thickness. These results are consistent with Eh-pH diagrams for the Cu–S–H2O system.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Atef S. Gadalla ◽  
Hamdan A. S. Al-shamiri ◽  
Saad Melhi Alshahrani ◽  
Huda F. Khalil ◽  
Mahmoud M. El Nahas ◽  
...  

In this study, cadmium Sulfide (CdS) thin films were synthesized on quartz substrates using an infrared pulsed laser deposition (IR-PLD) technique under high vacuum (~10−6 Torr) conditions. X-ray diffraction was used to evaluate the structural features. According to X-ray analysis, the deposited CdS films are crystalline and have a favored orientation on a plane (110) of an orthorhombic. The peak intensity and the average crystallite size increases with increasing the film thickness. After annealing at 300 °C, the orthorhombic phase transformed into a predominant hexagonal phase and the same result was obtained by SEM photographs as well. Spectrophotometric measurements of transmittance and reflectance of the CdS films were used to derive optical constants (n, k, and absorption coefficient α). The optical band gap energy was found to be 2.44 eV. The plasma plume formation and expansion during the film deposition have also been discussed. The photocurrent response as a function of the incident photon energy E (eV) at different bias voltages for different samples of thicknesses (85, 180, 220 and 340 nm) have been studied, indicating that the photocurrent increases by increasing both the film thickness and photon energy with a peak in the vicinity of the band edge. Thus, the prepared CdS films are promising for application in optoelectronic field.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Claudia Cancellieri ◽  
Daniel Ariosa ◽  
Aleksandr V. Druzhinin ◽  
Yeliz Unutulmazsoy ◽  
Antonia Neels ◽  
...  

Thin films generally contain depth-dependent residual stress gradients, which influence their functional properties and stability in harsh environments. An understanding of these stress gradients and their influence is crucial for many applications. Standard methods for thin-film stress determination only provide average strain values, thus disregarding possible variation in strain/stress across the film thickness. This work introduces a new method to derive depth-dependent strain profiles in thin films with thicknesses in the submicrometre range by laboratory-based in-plane grazing X-ray diffraction, as applied to magnetron-sputtering-grown polycrystalline Cu thin films with different thicknesses. By performing in-plane grazing diffraction analysis at different incidence angles, the in-plane lattice constant depth profile of the thin film can be resolved through a dedicated robust data processing procedure. Owing to the underlying intrinsic difficulties related to the inverse Laplace transform of discrete experimental data sets, four complementary procedures are presented to reliably extract the strain depth profile of the films from the diffraction data. Surprisingly, the strain depth profile is not monotonic and possesses a complex shape: highly compressive close to the substrate interface, more tensile within the film and relaxed close to the film surface. The same strain profile is obtained by the four different data evaluation methods, confirming the validity of the derived depth-dependent strain profiles as a function of the film thickness. Comparison of the obtained results with the average in-plane stresses independently derived by the standard stress analysis method in the out-of-plane diffraction geometry validates the solidity of the proposed method.


Author(s):  
Manosi Roy ◽  
Dhananjay Kumar

Abstract The objective of this study is to investigate the effect of film thickness on the bandgap of oxygen (O2)-doped titanium nitride (TiN) thin films. To accomplish this, high-quality two-dimensional O2-doped TiN films have been prepared on single-crystal sapphire substrates using a pulsed laser deposition method. The film thicknesses were varied from 3 to 100 nm by varying the number of laser pulses, while other deposition parameters are kept constant. X-ray diffraction (XRD) patterns have shown that the films grow in (111) orientation on the sapphire substrate. The increase in the intensity of the XRD (111) peak also demonstrates a better orientational alignment of the TiN films with substrate as the film thickness increases. The x-ray rocking curve has been used to measure the full width half maxima (FWHM) for each film. The FWHM values has been found to vary from 0.07 to 0.2° as the film thickness decreases. This is taken to indicate that the grain size decreases with a decrease in film thickness. Ultraviolet visible spectroscopy measurements in the wavelength range (200–800 nm) have been performed as well, which indicates an increase in the bandgap of O2-doped TiN films with a decrease in film thickness. The decrease in the film thickness leads to a blue shift of the peak in the ultraviolet-visible absorption (UV-A) region; this blueshift is accompanied by an increase in the bandgap of O2-doped TiN from 3.2 to 3.8 eV. The change in the bandgap due to a change in film thickness has been explained using the quantum confinement effect.


2019 ◽  
Vol 17 (12) ◽  
pp. 987-990
Author(s):  
K. Rathi Devi ◽  
G. Selvan ◽  
M. Karunakaran ◽  
G. Rajesh Kanna ◽  
K. Kasirajan

In this work, Mn doped Zinc Oxide (ZnO) thin films were coated onto glass substrates by low cost SILAR technique by altering dipping cycle such as 40, 60, 80 and 100. The film thickness was estimated using weight gain method and it revealed that the film thickness increased with dipping cycle. The structural, morphological, elemental and FTIR properties of the coated Mn doped ZnO films were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), EDAX and FTIR spectrophotometer respectively. The prepared films were found to be hexagonal structure with polycrystalline in nature with preferential orientation along (002) plane. X-ray line profile analysis was used to evaluate the micro structural parameters. The crystallite size values are increased with increase of dipping cycle. Morphological results showed that the dipping cycle has a marked effect on morphology of the prepared Mn doped ZnO thin films. EDAX studies showed that the presence of Zinc, Oxygen and Mn content.


1987 ◽  
Vol 108 ◽  
Author(s):  
D. Goyal ◽  
W. Ng ◽  
A. H. King ◽  
J. C. Bilello

ABSTRACTWe have used synchrotron x-ray topographic techniques to study the stresses in thin films formed upon silicon substrates either by evaporation or sputtering. It is found that the film stress generally decreases with increasing film thickness for evaporated films, but film delamination occurs at a well defined film thickness. Transmission electron microscope studies have been performed on the same specimens in order to reveal what mechanisms are involved with the delamination of the films.


2006 ◽  
Vol 21 (2) ◽  
pp. 145-147 ◽  
Author(s):  
Chris M. Sparks ◽  
Elizabeth P. Hastings ◽  
George J. Havrilla ◽  
Michael Beckstead

The versatility of confocal micro X-ray fluorescence (MXRF) in analyzing thin films on semiconductor wafers is demonstrated. Unlike conventional MXRF, confocal MXRF can depth profile sample layers and reduce spectral background. Nondestructive quantification of the silicon dioxide concentration in hafnium silicate thin films is an example of one application demonstrating the advantage of confocal MXRF. Additionally, the growth of titanium nitride films on various high-k gate dielectric substrates was analyzed with confocal MXRF due to its ability to detect sub-nm film thickness changes.


Sign in / Sign up

Export Citation Format

Share Document