scholarly journals Selective Vulnerability of Neurons in Layer II of the Entorhinal Cortex during Aging and Alzheimer's Disease

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Alexis M. Stranahan ◽  
Mark P. Mattson

All neurons are not created equal. Certain cell populations in specific brain regions are more susceptible to age-related changes that initiate regional and system-level dysfunction. In this respect, neurons in layer II of the entorhinal cortex are selectively vulnerable in aging and Alzheimer's disease (AD). This paper will cover several hypotheses that attempt to account for age-related alterations among this cell population. We consider whether specific developmental, anatomical, or biochemical features of neurons in layer II of the entorhinal cortex contribute to their particular sensitivity to aging and AD. The entorhinal cortex is a functionally heterogeneous environment, and we will also review data suggesting that, within the entorhinal cortex, there is subregional specificity for molecular alterations that may initiate cognitive decline. Taken together, the existing data point to a regional cascade in which entorhinal cortical alterations directly contribute to downstream changes in its primary afferent region, the hippocampus.

Author(s):  
Kun Leng ◽  
Emmy Li ◽  
Rana Eser ◽  
Antonia Piergies ◽  
Rene Sit ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is characterized by the selective vulnerability of specific neuronal populations, the molecular signatures of which are largely unknown. To identify and characterize selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile the caudal entorhinal cortex and the superior frontal gyrus – brain regions where neurofibrillary inclusions and neuronal loss occur early and late in AD, respectively – from postmortem brains spanning the progression of AD-type tau neurofibrillary pathology. We identified RORB as a marker of selectively vulnerable excitatory neurons in the entorhinal cortex, and subsequently validated their depletion and selective susceptibility to neurofibrillary inclusions during disease progression using quantitative neuropathological methods. We also discovered an astrocyte subpopulation, likely representing reactive astrocytes, characterized by decreased expression of genes involved in homeostatic functions. Our characterization of selectively vulnerable neurons in AD paves the way for future mechanistic studies of selective vulnerability and potential therapeutic strategies for enhancing neuronal resilience.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Angela M. Crist ◽  
Kelly M. Hinkle ◽  
Xue Wang ◽  
Christina M. Moloney ◽  
Billie J. Matchett ◽  
...  

AbstractSelective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer’s disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


2018 ◽  
Author(s):  
Sarah K. Kaufman ◽  
Kelly Del Tredici ◽  
Talitha L. Thomas ◽  
Heiko Braak ◽  
Marc I. Diamond

AbstractAlzheimer’s disease (AD) is characterized by accumulation of tau neurofibrillary tangles (NFTs) and, according to the prion model, transcellular propagation of pathological “seeds” may underlie its progression. Staging of NFT pathology with phospho-tau antibody is useful to classify AD and primary age-related tauopathy (PART) cases. The locus coeruleus (LC) shows the earliest phospho-tau signal, whereas other studies suggest that pathology begins in the transentorhinal/entorhinal cortices (TRE/EC). The relationship of tau seeding activity, phospho-tau pathology, and progression of neurodegeneration remains obscure. Consequently, we employed an established cellular biosensor assay to quantify tau seeding activity in fixed human tissue, in parallel with AT8 phospho-tau staining of immediately adjacent sections. We studied four brain regions from each of n=247 individuals across a range of disease stages. We detected the earliest and most robust seeding activity in the TRE/EC. The LC did not uniformly exhibit seeding activity until later NFT stages. We also detected seeding activity in the first temporal gyrus and visual cortex at stages before NFTs and/or AT8-immunopositivity were detectable. AD and putative PART cases exhibited similar patterns of seeding activity that anticipated histopathology across all NFT stages. Our findings are consistent with the prion model and suggest that pathological seeding activity begins in the TRE/EC rather than in the LC, and may offer an important addition to classical histopathology.


2021 ◽  
Vol 22 (17) ◽  
pp. 9205
Author(s):  
Amaya Urdánoz-Casado ◽  
Javier Sánchez-Ruiz de Gordoa ◽  
Maitane Robles ◽  
Blanca Acha ◽  
Miren Roldan ◽  
...  

The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer’s disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with β-Amyloid (Aβ) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aβ deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.


2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 636-637
Author(s):  
Yaroslav Markov ◽  
Kyra Thrush ◽  
Morgan Levine

Abstract Aging is the major risk factor for Alzheimer’s Disease (AD), and as life expectancy increases, neurodegeneration will continue to afflict an ever-increasing proportion of the population. While numerous theories are attempting to explain the drivers behind AD pathology, what unites them is the observation that AD is reliably associated with a progressive buildup of age-related molecular changes. Because of the varying clinical presentations of AD in patients with similar genetic backgrounds, it has been postulated that epigenetics may be implicated in its etiology. Building on our prior work showing that AD pathology is linked to alterations in age-related DNA CpG methylation (DNAme) across various brain regions, we use state-of-the-art machine learning approaches to identify patterns of molecular damage in postmortem brain samples. We show that alterations in DNAme are associated with accelerated biological aging, AD, and the APOE e4 genotype, which is a major risk factor for AD. We also demonstrate that these associations are present in the PFC but not cerebellum -- in line with the current understanding of AD progression in the brain. Finally, we perform whole-exome sequencing and protein mass spectrometry on the same brain samples to test our hypothesis as to whether AD-associated alterations of DNAme are linked with the accumulation of somatic mutations that affect the structural and binding properties of protein epigenetic regulators.


2020 ◽  
Vol 16 (13) ◽  
pp. 1175-1182 ◽  
Author(s):  
Guini Hong ◽  
Pengming Zeng ◽  
Na Li ◽  
Hao Cai ◽  
You Guo ◽  
...  

Background: Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. However, few studies have investigated the heterogeneous gene expression patterns in AD. Objective and Methods: We examined the gene expression patterns in four brain regions of AD based on the within-sample relative expression orderings (REOs). Gene pairs with significantly reversed REOs in AD samples compared to non-AD controls were identified for each brain region using Fisher’s exact test, and filtered according to their transcriptional differences between AD samples. Subgroups of AD were classified by cluster analysis. Results: REO-based gene expression profiling analyses revealed that transcriptional differences, as well as distinct disease subsets, existed within AD patients. For each brain region, two main subgroups were classified: one subgroup reported differentially expressed genes overlapped with the age-related genes, and the other might relate to neuroinflammation. Conclusion: AD transcriptional subgroups might help understand the underlying pathogenesis of AD, and lend support to a personalized approach to AD management.


2020 ◽  
Vol 4 (1) ◽  
pp. 365-371
Author(s):  
John K. Young

One unexplained feature of Alzheimer’s disease (AD) is that the lateral entorhinal cortex undergoes neurodegeneration before other brain areas. However, this brain region does not have elevated levels of amyloid peptides in comparison with undamaged regions. What is the cause of this special vulnerability of the entorhinal cortex? One special feature of the lateral entorhinal cortex is that it projects to newborn neurons that have undergone adult neurogenesis in the dentate gyrus of the hippocampus. Neurogenesis is abnormal in human AD brains, and modulation of neurogenesis in experimental animals influences the course of AD. This complex process of neurogenesis may expose axon terminals originating from neurons of the entorhinal cortex to a unique combination of molecules that can enhance toxic effects of amyloid. Retrograde degeneration of neurons with axons terminating in the dentate gyrus provides a likely explanation for the spatial patterns of neuronal cell death seen in AD. Specialized astrocytes in the dentate gyrus participate in adult neurogenesis and produce fatty acid binding protein7 (FABP7). These FABP7+ cells undergo an aging-related mitochondrial pathology that likely impairs their functions. This age-related abnormality may contribute to the impairment in neurogenesis seen in aging and Alzheimer’s disease. Also, a compromised function of these astrocytes likely results in local elevations of palmitic acid, iron, copper, and glucose, which all enhance the toxicity of amyloid peptides. Treatments that modulate neurogenesis or diminish the production of these toxic substances may prove more successful than treatments that are solely aimed at reducing the amyloid burden alone.


Brain ◽  
2020 ◽  
Vol 143 (11) ◽  
pp. 3463-3476
Author(s):  
Keith A Josephs ◽  
Peter R Martin ◽  
Stephen D Weigand ◽  
Nirubol Tosakulwong ◽  
Marina Buciuc ◽  
...  

Abstract Alzheimer’s disease is characterized by the presence of amyloid-β and tau deposition in the brain, hippocampal atrophy and increased rates of hippocampal atrophy over time. Another protein, TAR DNA binding protein 43 (TDP-43) has been identified in up to 75% of cases of Alzheimer’s disease. TDP-43, tau and amyloid-β have all been linked to hippocampal atrophy. TDP-43 and tau have also been linked to hippocampal atrophy in cases of primary age-related tauopathy, a pathological entity with features that strongly overlap with those of Alzheimer’s disease. At present, it is unclear whether and how TDP-43 and tau are associated with early or late hippocampal atrophy in Alzheimer’s disease and primary age-related tauopathy, whether either protein is also associated with faster rates of atrophy of other brain regions and whether there is evidence for protein-associated acceleration/deceleration of atrophy rates. We therefore aimed to model how these proteins, particularly TDP-43, influence non-linear trajectories of hippocampal and neocortical atrophy in Alzheimer’s disease and primary age-related tauopathy. In this longitudinal retrospective study, 557 autopsied cases with Alzheimer’s disease neuropathological changes with 1638 ante-mortem volumetric head MRI scans spanning 1.0–16.8 years of disease duration prior to death were analysed. TDP-43 and Braak neurofibrillary tangle pathological staging schemes were constructed, and hippocampal and neocortical (inferior temporal and middle frontal) brain volumes determined using longitudinal FreeSurfer. Bayesian bivariate-outcome hierarchical models were utilized to estimate associations between proteins and volume, early rate of atrophy and acceleration in atrophy rates across brain regions. High TDP-43 stage was associated with smaller cross-sectional brain volumes, faster rates of brain atrophy and acceleration of atrophy rates, more than a decade prior to death, with deceleration occurring closer to death. Stronger associations were observed with hippocampus compared to temporal and frontal neocortex. Conversely, low TDP-43 stage was associated with slower early rates but later acceleration. This later acceleration was associated with high Braak neurofibrillary tangle stage. Somewhat similar, but less striking, findings were observed between TDP-43 and neocortical rates. Braak stage appeared to have stronger associations with neocortex compared to TDP-43. The association between TDP-43 and brain atrophy occurred slightly later in time (∼3 years) in cases of primary age-related tauopathy compared to Alzheimer’s disease. The results suggest that TDP-43 and tau have different contributions to acceleration and deceleration of brain atrophy rates over time in both Alzheimer’s disease and primary age-related tauopathy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Holly C. Hunsberger ◽  
Bennett P. Greenwood ◽  
Vladimir Tolstikov ◽  
Niven R. Narain ◽  
Michael A. Kiebish ◽  
...  

Abstract Alzheimer’s disease (AD) is a progressive and debilitating neurodegenerative disorder and one of the leading causes of death in the United States. Although amyloid plaques and fibrillary tangles are hallmarks of AD, research suggests that pathology associated with AD often begins 20 or more years before symptoms appear. Therefore, it is essential to identify early-stage biomarkers in those at risk for AD and age-related cognitive decline (ARCD) in order to develop preventative treatments. Here, we used an untargeted metabolomics analysis to define system-level alterations following cognitive decline in aged and APP/PS1 (AD) mice. At 6, 12, and 24 months of age, both control (Ctrl) and AD mice were tested in a 3-shock contextual fear conditioning (CFC) paradigm to assess memory decline. AD mice exhibited memory deficits across age and these memory deficits were also seen in naturally aged mice. Prefrontal cortex (PFC), hippocampus (HPC), and spleen were then collected and analyzed for metabolomic alterations. A number of significant pathways were altered between Ctrl and AD mice and naturally aged mice. By identifying systems-level alterations following ARCD and AD, these data could provide insights into disease mechanisms and advance the development of biomarker panels.


Sign in / Sign up

Export Citation Format

Share Document