scholarly journals Epoetin Delta Reduces Oxidative Stress in Primary Human Renal Tubular Cells

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Annelies De Beuf ◽  
Xiang-hua Hou ◽  
Patrick C. D'Haese ◽  
Anja Verhulst

Erythropoietin (EPO) exerts (renal) tissue protective effects. Since it is unclear whether this is a direct effect of EPO on the kidney or not, we investigated whether EPO is able to protect human renal tubular epithelial cells (hTECs) from oxidative stress and if so which pathways are involved. EPO (epoetin delta) could protect hTECs against oxidative stress by a dose-dependent inhibition of reactive oxygen species formation. This protective effect is possibly related to the membranous expression of the EPO receptor (EPOR) since our data point to the membranous EPOR expression as a prerequisite for this protective effect. Oxidative stress reduction went along with the upregulation of renoprotective genes. Whilst three of these, heme oxygenase-1 (HO-1), aquaporin-1 (AQP-1), and B-cell CLL/lymphoma 2 (Bcl-2) have already been associated with EPO-induced renoprotection, this study for the first time suggests carboxypeptidase M (CPM), dipeptidyl peptidase IV (DPPIV), and cytoglobin (Cygb) to play a role in this process.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 479
Author(s):  
Seong Hoon Kim ◽  
Hye-Won Yum ◽  
Seung Hyeon Kim ◽  
Wonki Kim ◽  
Su-Jung Kim ◽  
...  

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.


1998 ◽  
Vol 275 (1) ◽  
pp. F1-F7 ◽  
Author(s):  
Ulla Holtbäck ◽  
Yoshiyuki Ohtomo ◽  
Petter Förberg ◽  
Bo Sahlgren ◽  
Anita Aperia

Renal sympathetic nerves play a central role in the regulation of tubular Na+ reabsorption. Norepinephrine (NE) and neuropeptide Y (NPY) are colocalized in renal sympathetic nerve endings. The purpose of this study is to examine the integrated effects of these neurotransmitters on the regulation of Na+-K+-ATPase, the enzyme responsible for active Na+ reabsorption in renal tubular cells. Studies were performed on proximal tubular segments, which express adrenergic α- and β-receptors, as well as NPY-Y2 receptors. It was found that α- and β-adrenergic agonists had opposing effects on Na+-K+-ATPase activity. β-Adrenergic agonists induced a dose-dependent inhibition of the Na+-K+-ATPase activity, whereas α-adrenergic agonists stimulated the enzyme. NPY abolished β-agonist-induced deactivation of Na+-K+-ATPase and enhanced α-agonist-induced activation of Na+-K+-ATPase. The β-adrenergic agonist appeared to inhibit Na+-K+-ATPase activity via a cAMP pathway. NPY antagonized β-agonist-induced accumulation of cAMP. In our preparation, NE alone had no net effect but stimulated the Na+-K+-ATPase activity in the presence of β-adrenergic antagonists, as well as in the presence of NPY. The results indicate that, in renal tissue, NPY determines the net effect of its colocalized transmitter, NE, by its ability to attenuate the β- and enhance the α-adrenergic effect.


2002 ◽  
Vol 36 (8) ◽  
pp. 835-843 ◽  
Author(s):  
G.J. Schaaf ◽  
R.F.M. Maas ◽  
E.M. de Groene ◽  
J. Fink-Gremmels

1993 ◽  
Vol 264 (1) ◽  
pp. F149-F157 ◽  
Author(s):  
J. Gailit ◽  
D. Colflesh ◽  
I. Rabiner ◽  
J. Simone ◽  
M. S. Goligorsky

Tubular obstruction by detached renal tubular epithelial cells is a major cause of oliguria in acute renal failure. Viable renal tubular cells can be recovered from urine of patients with acute tubular necrosis, suggesting a possible defect in cell adhesion to the basement membrane. To study this process of epithelial cell desquamation in vitro, we investigated the effect of nonlethal oxidative stress on the integrin adhesion receptors of the primate kidney epithelial cell line BS-C-1. Morphological and functional studies of cell adhesion properties included the following: interference reflection microscopy, intravital confocal microscopy and immunocytochemistry, flow cytometric analysis of integrin receptor abundance, and cell-matrix attachment assay. High levels of the integrin subunits alpha 3, alpha v, and beta 1 were detected on the cell surface by fluorescence-activated cell sorting (FACS) analysis, as well as lower levels of alpha 1, alpha 2, alpha 4, alpha 5, alpha 6, and beta 3. Exposure of BS-C-1 cells to nonlethal oxidative stress resulted in the disruption of focal contacts, disappearance of talin from the basal cell surface, and in the redistribution of integrin alpha 3-subunits from predominantly basal location to the apical cell surface. As measured in a quantitative cell attachment assay, oxidative stress decreased BS-C-1 cell adhesion to type IV collagen, laminin, fibronectin, and vitronectin. Defective adhesion was not associated with a loss of alpha 3-, alpha 4-, or alpha v-integrin subunits from the cell surface.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.


2017 ◽  
Vol 313 (4) ◽  
pp. F906-F913 ◽  
Author(s):  
Wei Zhang ◽  
Xiangjun Zhou ◽  
Qisheng Yao ◽  
Yutao Liu ◽  
Hao Zhang ◽  
...  

Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes.


2021 ◽  
Author(s):  
Elham Hakimizadeh ◽  
Ayat Kaeidi ◽  
Mohammadreza Rahmani ◽  
Mohammad Allahtavakoli ◽  
Jalal Hassanshahi

Abstract Purpose: Calcium dobesilate (CaD) has antioxidant and anti-inflammatory properties. In this study, the protective effects of CaD against hepatorenal damage induced by CCL4 in male mice were evaluated. Methods: Thirty male mice randomly were divided into five groups: Control, CaD 100 mg/kg, CCL4, CCL4+CaD 50 mg/kg, and CCL4+CaD 100 mg/kg. Drugs were administered orally once a day for 4-weeks. The liver and kidney indices (serum creatinine, blood urine nitrogen, alanine aminotransferase and aspartate aminotransferase levels) were determined. Also, hepatic and renal tissue oxidant/antioxidant markers (glutathione peroxidase, malondialdehyde, total antioxidant capacity, and superoxide dismutase) were measured. Cleaved caspase-3, Bax, and Bcl-2 protein levels were measured by immunoblotting method. The liver and kidney histopathological changes were evaluated by H&E staining.Results: CCL4 induces significant oxidative stress in the kidney and liver that was concomitant with functional and histopathological abnormalities in these organs in the CCL4 group versus the control (P<0.05). CaD could significantly improve the histopathological change in the liver and kidney tissues of CCL4+CaD 100 mg/kg mice versus the CCL4 group (P<0.05). In addition, CaD attenuated apoptosis in the liver and kidney tissues (P<0.05).Conclusion: The protective effect of CaD may be related to its anti-inflammatory and antioxidant properties.


1992 ◽  
Vol 263 (5) ◽  
pp. F806-F811 ◽  
Author(s):  
N. J. Morin ◽  
G. Laurent ◽  
D. Nonclercq ◽  
G. Toubeau ◽  
J. A. Heuson-Stiennon ◽  
...  

Epidermal growth factor (EGF) is a potent mitogen for renal tubular cells that possess specific high-affinity binding sites for this polypeptide. However, actual function of EGF within the kidney remains to be elucidated. We evaluated the effect of exogenous EGF administration on the rate of tubular regeneration in an experimental model of gentamicin (GT) nephrotoxicity. Female Sprague-Dawley rats were anesthetized, and a miniosmotic pump filled with mouse EGF or saline was implanted subcutaneously. Twenty-four hours later, GT (40 mg.kg-1 x 12 h-1 ip) was given for 4 and 8 days. Groups of treated animals and controls were killed either the day after cessation of treatment (days 5 and 9) or 4 and 8 days after the end of 8-day GT administration (days 12 and 16). Cortical GT levels of groups killed at days 5, 9, 12, and 16 were similar in animals infused with saline or EGF. Serum creatinine levels were significantly higher in GT-treated animals infused with EGF or saline and killed at days 9 and 12 compared with saline-treated animals infused with EGF or saline alone (P < 0.01). Blood urea nitrogen (BUN) also increased as a result of GT administration. However, in animals receiving GT and EGF and killed at day 16, mean BUN level was significantly lower (P < 0.01) compared with rats dosed with GT alone. In treated rats, the extent of tubular regeneration, evaluated by the rate of [3H]thymidine incorporation into renal cortical DNA or by the frequency of S-phase cells (histoautoradiography), was increased in a dose- and time-dependent fashion.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 267 (6) ◽  
pp. R1653-R1657 ◽  
Author(s):  
A. Nir ◽  
K. W. Beers ◽  
A. L. Clavell ◽  
C. M. Wei ◽  
D. M. Heublein ◽  
...  

C-type natriuretic peptide (CNP) is a vasoactive and antimitogenic peptide that is structurally similar but genetically distinct from atrial natriuretic peptide. While first discovered in the brain, CNP has been shown to be produced by endothelial cells and may function in a paracrine and autocrine fashion in the control of vascular tone. Recently, CNP immunoreactivity and B-type natriuretic peptide receptors (NPR-B), for which CNP is a specific ligand, have been identified in the kidney. The present study was designed to determine whether renal epithelial cells produce and secrete CNP and whether CNP immunoreactivity is present in canine kidney. Opossum kidney (OK) cells that express proximal tubular cell characteristics were incubated for 6 h in fetal calf serum-free Dulbecco's modified Eagle's medium (DMEM). CNP immunoreactivity was measured in the preincubation and 6-h conditioned media by radioimmunoassay (RIA) using a specific antibody to CNP-22. Furthermore the molecular form of this CNP-like protein was determined by reverse-phase high-performance liquid chromatography (HPLC), and intracellular localization of the CNP immunoreactivity was determined by immunohistochemical staining. CNP immunoreactivity was also determined in renal tissue from dogs subjected to saline or endothelin infusion. Six-hour incubation in DMEM resulted in accumulation of CNP immunoreactivity (baseline below detection level vs. 6 h = 117.3 +/- 8.3 pg/ml, P < 0.001). Intracellular CNP concentration determined after sonication was 1.9 +/- 0.2 micrograms/g protein, and immunohistochemical staining for CNP was markedly positive in the cytoplasm.(ABSTRACT TRUNCATED AT 250 WORDS)


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 380 ◽  
Author(s):  
Huang ◽  
Chang ◽  
Chau ◽  
Chiu

Hispidin, a polyphenol compound isolated from Phellinus linteus, has been reported to possess antioxidant activities. In this study, we aimed to investigate the mechanisms underlying the protective effect of hispidin against hydrogen peroxide (H2O2)-induced oxidative stress on Adult Retinal Pigment Epithelial cell line-19 (ARPE-19) cells. Hispidin was not cytotoxic to ARPE-19 cells at concentrations of less than 50 μM. The levels of intracellular reactive oxygen species (ROS) were analyzed by dichlorofluorescin diacetate (DCFDA) staining. Hispidin significantly restored H2O2-induced cell death and reduced the levels of intracellular ROS. The expression levels of antioxidant enzymes, such as NAD(P)H:Quinine oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM) were examined using real-time PCR and Western blotting. Our results showed that hispidin markedly enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, NQO-1, GCLM, and GCLC in a dose-dependent manner. Furthermore, knockdown experiments revealed that transfection with Nrf2 siRNA successfully suppresses the hispidin activated Nrf2 signaling in ARPE-19 cells. Moreover, activation of the c-Jun N-terminal kinase (JNK) pathway is involved in mediating the protective effects of hispidin on the ARPE-19 cells. Thus, the present study demonstrated that hispidin provides protection against H2O2-induced damage in ARPE-19 cells via activation of Nrf2 signaling and up-regulation of its downstream targets, including Phase II enzymes, which might be associated with the activation of the JNK pathway.


Sign in / Sign up

Export Citation Format

Share Document