scholarly journals -Wave Pairing in Quantum Hall Bilayers

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Z. Papić ◽  
M. V. Milovanović

We show that the wave functions that describe the ground states of putative -wave-paired phases in quantum Hall bilayers, like the Pfaffian at or the paired phase at , are more likely to describe the excited states of Fermi liquids at these filling factors. We point out to the close competition between Fermi liquid and paired phases, which leads to the conclusion that in the experiments only direct transitions from the correlated 111 and 331 states into Fermi liquid(s) are likely to be observed.

2012 ◽  
Vol 26 (21) ◽  
pp. 1250134 ◽  
Author(s):  
Z. PAPIĆ ◽  
M. V. MILOVANOVIĆ

The phase diagram of a quantum Hall bilayer at total filling ν = 1 contains an incompressible superfluid for small distances d between the layers, as well as the compressible phase corresponding to two uncoupled Fermi liquids for large d. Using exact diagonalization on the sphere and torus geometry, we investigate a long-standing question of the nature of the transition between the two regimes, and the possibility for the existence of a paired phase in the transition region. We find considerable evidence for a direct transition between the superfluid and the Fermi liquid phase, based in particular on the behavior of the ground state energy on the sphere (including appropriate finite-size corrections) as a function of d. At the critical distance dC ≈ 11.6ℓB the topological number ("shift") of the ground state changes, suggesting that tuning the layer separation d in experiment likely leads to a direct transition between the superfluid and the Fermi liquid phase.


1998 ◽  
Vol 12 (11) ◽  
pp. 1125-1134 ◽  
Author(s):  
Ranjan Kumar Ghosh ◽  
Sumathi Rao

We construct many particle Hamiltonians for which the Laughlin and Jain wavefunctions are exact ground states. The Hamiltonians involve fermions in a magnetic field and with inter-particle interactions. For the Laughlin wave-functions, the interactions involve two- and three-body correlations similar to the Chern–Simons interactions, whereas for the projected Jain wave-functions, N-body interactions (which cannot be explicitly written down in general) are involved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicodemos Varnava ◽  
Justin H. Wilson ◽  
J. H. Pixley ◽  
David Vanderbilt

AbstractEngineering and manipulation of unidirectional channels has been achieved in quantum Hall systems, leading to the construction of electron interferometers and proposals for low-power electronics and quantum information science applications. However, to fully control the mixing and interference of edge-state wave functions, one needs stable and tunable junctions. Encouraged by recent material candidates, here we propose to achieve this using an antiferromagnetic topological insulator that supports two distinct types of gapless unidirectional channels, one from antiferromagnetic domain walls and the other from single-height steps. Their distinct geometric nature allows them to intersect robustly to form quantum point junctions, which then enables their control by magnetic and electrostatic local probes. We show how the existence of stable and tunable junctions, the intrinsic magnetism and the potential for higher-temperature performance make antiferromagnetic topological insulators a promising platform for electron quantum optics and microelectronic applications.


1991 ◽  
Vol 05 (10) ◽  
pp. 1771-1778 ◽  
Author(s):  
Chia-Ren Hu

A topological argument similar to that of Leinaas and Myrheim implies that a non-trivial statistical phase factor can also arise from exchanging twice a pair of distinguishable particles in two dimensions. Some general properties of this phase factor are deduced. Wilczek's model for anyons and the Laughlin theory for the quasiparticles in the fractional quantum Hall ground states are examined in light of these properties, and the former is generalized for systems containing many species of anyons. The statistical properties of holons and spinons relative to each other are briefly discussed as an example.


Author(s):  
Lucas Happ ◽  
Matthias Zimmermann ◽  
Maxim A Efremov

Abstract We study a heavy-heavy-light three-body system confined to one space dimension in the regime where an excited state in the heavy-light subsystems becomes weakly bound. The associated two-body system is characterized by (i) the structure of the weakly-bound excited heavy-light state and (ii) the presence of deeply-bound heavy-light states. The consequences of these aspects for the behavior of the three-body system are analyzed. We find a strong indication for universal behavior of both three-body binding energies and wave functions for different weakly-bound excited states in the heavy-light subsystems.


2020 ◽  
Author(s):  
Jiawei Wang ◽  
Jiebin Niu ◽  
Bin Shao ◽  
Guanhua YANG ◽  
Congyan Lu ◽  
...  

Abstract Organic conjugated polymers demonstrate great potential in the transistor, solar cell and light-emitting diodes. The performances of those devices are fundamentally governed by charge transport within the active materials. However, the morphology-property relationships and the underpinning charge transport mechanism in polymers remain unclear. Particularly, whether the nonlinear charge transport in doped conducting polymers, i.e., anomalous non-Ohmic behaviors at low temperature, is appropriately formulated within non-Fermi liquid picture is not clear. In this work, via varying crystalline degrees of samples, we carried out systematic investigations on the charge transport nonlinearity in conducting polymers. Possible charge carriers’ dimensionality was discussed with experiments when varying the molecular chain’s crystalline orders. A heterogeneous-resistive-network (HRN) model was proposed based on the tied link between Fermi liquids (FL) and Luttinger liquids (LL), related to the high-ordered crystalline zones and weak-coupled amorphous regions, respectively. This mesoscopic HRN model is experimentally supported by precise electrical and microstructural characterizations, together with theoretic evaluations. Significantly, such model well describes the nonlinear transport behaviors in conducting polymers universally and provides new insights into the microstructure-correlated charge transport in organic conducting/semiconducting systems.


Author(s):  
Qi-Fang Lü ◽  
Dian-Yong Chen ◽  
Yu-Bing Dong

AbstractInspired by recent measurement of possible fully charmed tetraquarks in LHCb Collaboration, we investigate the mass spectra of fully heavy tetraquarks $$QQ {\bar{Q}} {\bar{Q}}$$ Q Q Q ¯ Q ¯ in an extended relativized quark model. Our estimations indicate that the broad structure around 6.4 GeV should contain one or more ground states for $$cc {\bar{c}} {\bar{c}}$$ c c c ¯ c ¯ tetraquarks, while the narrow structure near 6.9 GeV can be categorized as the first radial excitation of $$cc {\bar{c}} {\bar{c}}$$ c c c ¯ c ¯ system. Moreover, with the wave functions of the tetraquarks and mesons, the strong decays of tetraquarks into heavy quarkonium pair are qualitatively discussed, which can be further checked by the LHCb and CMS Collaborations.


Sign in / Sign up

Export Citation Format

Share Document