scholarly journals Biosynthesis and Immobilization of Biofunctional Allophycocyanin

2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Yingjie Chen ◽  
Shaofang Liu ◽  
Yulin Cui ◽  
Peng Jiang ◽  
Huaxin Chen ◽  
...  

The holo-allophycocyanin-αsubunit, which has various reported pharmacological uses, was biosynthesized with both Strep-II-tag and His-tag at the N-terminal inEscherichia coli. The streptavidin-binding ability resulting from the Strep II-tag was confirmed by Western blot. Additionally, the metal-chelating ability deriving from the His-tag not only facilitated its purification by immobilized metal-ion affinity chromatography but also promoted its immobilization on Zn (II)-decorated silica-coated magnetic nanoparticles. The holo-allophycocyanin-αsubunit with streptavidin-binding ability was thereby immobilized on magnetic nanoparticles. Magnetic nanoparticles are promising as drug delivery vehicles for targeting and locating at tumors. Thus, based on genetic engineering and nanotechnology, we provide a potential strategy to facilitate the biomodification and targeted delivery of pharmacological proteins.

2015 ◽  
Vol 6 (8) ◽  
pp. 1286-1299 ◽  
Author(s):  
D. D. Lane ◽  
D. Y. Chiu ◽  
F. Y. Su ◽  
S. Srinivasan ◽  
H. B. Kern ◽  
...  

Second generation polymeric brushes with molecular weights in excess of 106 Da were synthesize via RAFT polymerization for use as antibody targeted drug delivery vehicles.


2020 ◽  
Vol 6 (50) ◽  
pp. eabc3013
Author(s):  
Tianyuan Ci ◽  
Hongjun Li ◽  
Guojun Chen ◽  
Zejun Wang ◽  
Jinqiang Wang ◽  
...  

Live cells have been vastly engineered into drug delivery vehicles to leverage their targeting capability and cargo release behavior. Here, we describe a simple method to obtain therapeutics-containing “dead cells” by shocking live cancer cells in liquid nitrogen to eliminate pathogenicity while preserving their major structure and chemotaxis toward the lesion site. In an acute myeloid leukemia (AML) mouse model, we demonstrated that the liquid nitrogen–treated AML cells (LNT cells) can augment targeted delivery of doxorubicin (DOX) toward the bone marrow. Moreover, LNT cells serve as a cancer vaccine and promote antitumor immune responses that prolong the survival of tumor-bearing mice. Preimmunization with LNT cells along with an adjuvant also protected healthy mice from AML cell challenge.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5952
Author(s):  
Bwalya A. Witika ◽  
Pedzisai A. Makoni ◽  
Larry L. Mweetwa ◽  
Pascal V. Ntemi ◽  
Melissa T. R. Chikukwa ◽  
...  

The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a “Trojan horse” for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.


2021 ◽  
Author(s):  
Moataz Dowaidar

The delivery of therapeutic drugs to the heart continues to be a challenge. Developing precise strategies to target the heart is equally as important as discovering new therapeutic medications. To grow this sector, a program that focuses on targeted delivery to the heart, as well as efforts to improve cardiac selectivity and retention of therapeutic medications, may be required. Targeted medicine distribution is one of the most important and unresolved issues in pharmacology. Viruses, on the other hand, have evolved unique and extremely accurate tropisms toward their biological targets through the usage of specific binding proteins. The inclusion of these viral proteins into the plasma membrane of EVs should improve the efficiency with which EVs transport drugs to target cells. Understanding the structure, content, and mechanisms of exosome–cell interactions and uptake might also help with the creation of bioengineered exosomes and other EVs that might be used as targeted drug delivery vehicles. In addition to establishing the optimal vector for each therapeutic ingredient, effective clinical translation of cardiac medicines requires minimally invasive yet highly selective delivery techniques.


2014 ◽  
Vol 6 (4) ◽  
Author(s):  
Christophe A. Monnier ◽  
David Burnand ◽  
Barbara Rothen-Rutishauser ◽  
Marco Lattuada ◽  
Alke Petri-Fink

AbstractCombining liposomes with magnetic nanoparticles is an intriguing approach to create multifunctional vesicles for medical applications, which range from controlled drug delivery vehicles to diagnostic imaging enhancers. Over the past decade, significant effort has been invested in developing such hybrids – widely known as magnetoliposomes – and has led to numerous new concepts. This review provides an overview on of the current state of the art in this field. The concept of magnetic fluid hyperthermia and stimuli-responsive nanoparticles for drug delivery is briefly recapitulated. The materials needed for these hybrids are addressed as well. The three typically followed approaches to associate magnetic nanoparticles to the liposomes are described and discussed more in detail. The final chapters are dedicated to the analytical methods used to characterize these hybrids and to theoretical considerations relevant for bilayer-embedded nanoparticles.


2020 ◽  
Vol 21 (1) ◽  
pp. 3-22
Author(s):  
Tianzhong Li ◽  
Linfeng Huang ◽  
Mengsu Yang

Background: Genetic drugs have aroused much attention in the past twenty years. RNA interference (RNAi) offers novel insights into discovering potential gene functions and therapies targeting genetic diseases. Small interference RNA (siRNA), typically 21-23 nucleotides in length, can specifically degrade complementary mRNA. However, targeted delivery and controlled release of siRNA remain a great challenge. Methods: Different types of lipid-based delivery vehicles have been synthesized, such as liposomes, lipidoids, micelles, lipoplexes and lipid nanoparticles. These carriers commonly have a core-shell structure. For active targeting, ligands may be conjugated to the surface of lipid particles. Results: Lipid-based drug delivery vehicles can be utilized in anti-viral or anti-tumor therapies. They can also be used to tackle genetic diseases or discover novel druggable genes. Conclusion: In this review, the structures of lipid-based vehicles and possible surface modifications are described, and applications of delivery vehicles in biomedical field are discussed.


Langmuir ◽  
2020 ◽  
Vol 36 (23) ◽  
pp. 6345-6351 ◽  
Author(s):  
Yu Zhang ◽  
Yaojia Li ◽  
Zhiguo Gao ◽  
Bowen Ding ◽  
Peijing An ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1747
Author(s):  
Chiung-Hua Huang ◽  
Ting-Ju Chuang ◽  
Cherng-Jyh Ke ◽  
Chun-Hsu Yao

In this study, magnetic nanoparticles composed of a core (doxorubicin–gelatin) and a shell layer (Fe3O4–alginate) were developed to function as targeted anticancer drug delivery vehicles. The anticancer drug doxorubicin (DOX) was selected as a model drug and embedded in the inner gelatin core to obtain high encapsulation efficiency. The advantage of the outer magnetic layer is that it targets the drug to the tumor tissue and provides controlled drug release. The physicochemical properties of doxorubicin–gelatin/Fe3O4–alginate nanoparticles (DG/FA NPs) were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The mean diameter of DG/FA NPs, which was determined using a zeta potential analyzer, was 401.8 ± 3.6 nm. The encapsulation rate was 64.6 ± 11.8%. In vitro drug release and accumulation were also studied. It was found that the release of DOX accelerated in an acidic condition. With the manipulation of an external magnetic field, DG/FA NPs efficiently targeted Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and showed in the nucleus after 6 h of incubation. After 12 h of incubation, the relative fluorescence intensity reached 98.4%, and the cell viability of MCF-7 cells decreased to 52.3 ± 4.64%. Dual-layer DG/FA NPs could efficiently encapsulate and deliver DOX into MCF-7 cells to cause the death of cancer cells. The results show that DG/FA NPs have the potential for use in targeted drug delivery and cancer therapy.


Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 28-41 ◽  
Author(s):  
A. V. Sokolov ◽  
N. N. Kostin ◽  
L. A. Ovchinnikova ◽  
Y. A. Lomakin ◽  
A. A. Kudriaeva

The possibility of targeted drug delivery to a specific tissue, organ, or cell has opened new promising avenues in treatment development. The technology of targeted delivery aims to create multifunctional carriers that are capable of long circulation in the patients organism and possess low toxicity at the same time. The surface of modern synthetic carriers has high structural similarity to the cell membrane, which, when combined with additional modifications, also promotes the transfer of biological properties in order to penetrate physiological barriers effectively. Along with artificial nanocages, further efforts have recently been devoted to research into extracellular vesicles that could serve as natural drug delivery vehicles. This review provides a detailed description of targeted delivery systems that employ lipid and lipid-like nanocages, as well as extracellular vesicles with a high level of biocompatibility, highlighting genetically encoded drug delivery vehicles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Arbab Ali ◽  
Tufail Shah ◽  
Rehmat Ullah ◽  
Pingfan Zhou ◽  
Manlin Guo ◽  
...  

Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.


Sign in / Sign up

Export Citation Format

Share Document