scholarly journals Expression of Recombinant Human Coagulation Factor VII by the LizardLeishmaniaExpression System

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Sina Mirzaahmadi ◽  
Golnaz Asaadi-Tehrani ◽  
Mojgan Bandehpour ◽  
Nooshin Davoudi ◽  
Leila Tahmasbi ◽  
...  

The variety of recombinant protein expression systems have been developed as a resource of FVII gene expression. In the current study, the authors used a novel protein expression system based on the Iranian LizardLeishmania, a trypanosomatid protozoan as a host for expression of FVII. Plasmid containing cDNA encoding full-length human FVII was introduced into LizardLeishmaniaand positive transfectants were analyzed by SDS-PAGE and Western blot analysis. Furthermore, biological activity of purified protein was detected by PT assay. The recombinant strain harboring a construct was analyzed for expression of FVII at the mRNA and protein level. Purified rFVII was obtained and in order to confirm the purified compound was in fact rFVII. Western blot analysis was carried out. Clotting time in PT assay was reduced about 30 seconds with the purified rFVII. In Conclusion, this study has demonstrated, for the first time, thatLeishmaniacells can be used as an expression system for producing recombinant FVII.

Author(s):  
Sina Mirzaahmadi ◽  
Golnaz Asaadi-Tehrani ◽  
Mojgan Bandehpour ◽  
Nooshin Davoudi ◽  
Leila Tahmasbi ◽  
...  

1997 ◽  
Vol 88 (5) ◽  
pp. 445-448 ◽  
Author(s):  
Giorgio Dell'Acqua ◽  
Licia Iacoviello ◽  
Andria D'Orazio ◽  
Rosa Di Bitondo ◽  
Augusto Di Castelnuovo ◽  
...  

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Wazir Abdullahi ◽  
Hrvoje Brzica ◽  
Patrick Ronaldson

Introduction: Stroke is a leading cause of mortality and morbidity. Several drugs with neuroprotective properties have been proposed for stroke treatment but many have failed in clinical trials. These failures may be due to limited drug permeability across the blood-brain barrier (BBB). Targeting endogenous BBB uptake transporters (i.e., organic anion transporting polypeptides (Oatps)) is a novel approach that can improve CNS delivery of drugs relevant to stroke therapy (i.e., statins). Optimal CNS drug delivery via Oatp in the setting of stroke requires characterization of regulatory pathways such as transforming growth factor (TGF)-β signaling. The goal of the present study was to investigate, in vivo , involvement of TGF-β signaling via the activin-like kinase (ALK)-1 receptor on Oatp1a4 expression at the BBB. Methods: Female Sprague-Dawley rats (200-250 g) were administered bone morphogenic protein-9 (BMP-9; 0-5 μg/kg, i.p.), an ALK1 agonist, or vehicle (i.e., 0.9% saline). Inhibition experiments were performed using LDN193189 (0-5 mg/kg, i.p.), an ALK1 antagonist. Western blot analysis and fluorescence microscopy of isolated brain microvessels were used to determine protein expression and localization in rat brain microvessels respectively. Results: Fluorescence staining demonstrated localization of Oatp1a4 and ALK1 in rat brain microvessels. Western blot analysis showed a dose dependent increase in Oatp1a4 protein expression in brain microvessels isolated from BMP-9 treated rats as compared to controls. Treatment with 0.5 μg/kg and 5 μg/kg BMP-9 resulted in a 55% and 116% increase in Oatp1a4 protein expression, implying that activation of ALK1 signaling can up-regulate Oatp1a4 at the brain microvasculature. In contrast, 6 h treatment with LDN193189 did not alter Oatp1a4 expression across a dose range of 0-5 mg/kg, suggesting that ALK1 inhibition does not modulate basal Oatp1a4 expression at the BBB. Conclusions: Taken together, our data implies that TGF-β/ALK1 signaling may play a role in altering Oatp1a4 protein expression at the BBB. Studies are currently being undertaken in our laboratory to fully characterize the role of TGF-β/ALK1 signaling in determining CNS delivery of drugs relevant to stroke treatment (i.e., statins).


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Spencer Barnhill ◽  
Prakash Arumugam ◽  
John Matsuura ◽  
Scott Berceli ◽  
Katie Carroll ◽  
...  

Interleukin-2 (IL-2) is primarily known as a soluble cytokine that regulates T cell responses. We previously reported, however, that IL-2 is retained in the extracellular matrix by association with perlecan, a heparan sulfate proteoglycan (HSPG). Perlecan is the main HSPG in vascular basement membranes, and previous studies from our laboratory demonstrated that, in human arteries, vascular smooth muscle cells (VSMC) are surrounded by perlecan-bound IL-2. We also noted that IL-2 deficient mice lose SMCs with age, leading to widened esophagi and aortic aneurysms. Given this information, we hypothesized that IL-2 has a direct impact on VSMC, and that VSMC express functional IL-2 receptors (IL-2R). We therefore examined both protein and mRNA expression of each of the three IL-2R subunits (alpha, beta, gamma) on human VSMC grown from arterial explants. These VSMC expressed SMC actin, smooth muscle myosin heavy chain, and when quiescent, smoothelin. Protein expression was assessed by in cell Western and by Western blot analysis. Receptor expression was evaluated under distinct culture conditions, which yielded highly proliferative, intermediate, or quiescent VSMC. Contractile protein expression was low, intermediate, or high, respectively, consistent with the characteristics of proliferating vs quiescent SMCs. Each phenotype expressed all 3 subunits of the IL-2R. IL-2 subunits appeared to follow a cytoskeletal pattern in cells expressing high levels of contractile proteins. Western blot analysis of VSMC lysates revealed expression of all 3 receptors at molecular weights identical to lysates from a T cell line. VSMCs also expressed mRNA for each receptor subunit. Functionally, IL-2 promoted migration (using a Boyden chamber assay) and proliferation in a dose dependent fashion. Because excess proliferation and migration are critical to intimal hyperplasia, we asked whether IL-2 levels change under conditions known to generate intimal hyperplasia. In a rabbit model, IL-2 mRNA increased in venous grafts exposed to high flow for 2h. IL-2 levels, by Western blot, were also increased in human hyperplastic veins. In conclusion, these data show that VSMC have functional IL-2R, and suggest that IL-2 may contribute to the development of intimal hyperplasia.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Nathamon Yimpring ◽  
Sittiruk Roytrakul ◽  
Janthima Jaresitthikunchai ◽  
Narumon Phaonakrop ◽  
Sucheewin Krobthong ◽  
...  

Abstract Background Cryptorchidism is a condition that occurs when one or both testes fail to descend into the scrotum. It is a common congenital disorder, causing economic loss in pig production. However, there have been only limited studies of differential protein expression profiles in undescended testes (UDTs) in the abdomen and descended testes (DTs) in cryptorchid pigs, especially at the peptidome and proteome levels. The present study aimed to analyze the peptidome of UDTs and DTs in unilateral cryptorchid pigs aged 1–2, 6, 15 and 20 weeks and in normal testes of healthy pigs aged 1–2 and 12 weeks, using peptide mass fingerprinting and three-dimensional principal component analysis (3D-PCA) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and to identify potential protein candidates, using in-gel digestion coupled with mass spectrometry (GeLC-MS/MS). Western blot analysis was used to verify protein expression. Protein sequence was affirmed by liquid chromatography–tandem mass spectrometry. Results A PCA plot showed a discrete cluster for each sample group. Peptide mass fingerprints (PMFs) demonstrated unique peptide fragments in UDTs at different ages. A number of markedly expressed proteins from GeLC-MS/MS were identified, including the multifunctional tumor necrosis factor receptor superfamily member 18 (TNFRSF18), in DTs at 1–2 and 6 weeks and in UDTs at 15 and 20 weeks of age. Using western blot analysis, high expression of TNFRSF18 was observed in the UDTs at 15 weeks. Using the STITCH database, this protein was found to be related to apoptosis, corresponding to the previous report in the UDTs at the same age. Conclusions The present study revealed the specific PMFs and clusters for porcine cryptorchidism, and a novel protein, TNFRSF18, associated with the disease mechanism. These results could provide further insights into the pathogenesis of the disease.


Author(s):  
Storm N. S. Reid ◽  
Joung-Hyun Park ◽  
Yunsook Kim ◽  
Yi Sub Kwak ◽  
Byeong Hwan Jeon

Exogenous lactate administration has more recently been investigated for its various prophylactic effects. Lactate derived from potential functional foods, such as fermented oyster extract (FO), may emerge as a practical and effective method of consuming exogenous lactate. The current study endeavored to ascertain whether the lactate derived from FO may act on muscle cell biology, and to what extent this may translate into physical fitness improvements. We examined the effects of FO in vitro and in vivo, on mouse C2C12 cells and exercise performance indicators in mice, respectively. In vitro, biochemical analysis was carried out to determine the effects of FO on lactate content and muscle cell energy metabolism, including adenosine triphosphate (ATP) activity. Western blot analysis was also utilized to measure the protein expression of total adenosine monophosphate-activated protein kinase (AMPK), p-AMPK (Thr172), lactate dehydrogenase (LDH), succinate dehydrogenase (SDHA) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in response to FO administration. Three experimental groups were formed: a positive control (PC) treated with 1% horse serum, FO10 treated with 10 μg/mL and FO50 treated with 50 μg/mL. In vivo, the effects of FO supplementation on exercise endurance were measured using the Rota-rod test, and Western blot analysis measured myosin heavy-chain 2 (MYH2) to assess skeletal muscle growth, alongside p-AMPK, total-AMPK, PGC-1α, cytochrome C and UCP3 protein expression. Biochemical analysis was also performed on muscle tissue to measure the changes in concentration of liver lactate, lactate dehydrogenase (LDH), glycogen and citrate. Five groups (n = 10/per group) consisted of a control group (CON), exercise group (Ex), positive control treated with Ex and 500 mg/kg Taurine (Ex-Tau), Ex and 100 mg/kg FO supplementation (Ex-FO100) and Ex and 200 mg/kg FO supplementation (Ex-FO200) orally administered over the 4-week experimental period.FO50 significantly increased PGC-1α expression (p < 0.001), whereas both FO10 and FO50 increased the expression of p-AMPK (p < 0.001), in C2C12 muscle cells, showing increased signaling important for mitochondrial metabolism and biogenesis. Muscle lactate levels were also significantly increased following FO10 (p < 0.05) and FO50 (p < 0.001). In vivo, muscle protein expression of p-AMPK (p < 0.05) and PGC-1α were increased, corroborating our in vitro results. Cytochrome C also significantly increased following FO200 intake. These results suggest that the effects of FO supplementation may manifest in a dose-response manner. FO administration, in vitro, and supplementation, in vivo, both demonstrate a potential for improvements in mitochondrial metabolism and biogenesis, and even for potentiating the adaptive effects of endurance exercise. Mechanistically, lactate may be an important molecule in explaining the aforementioned positive effects of FO.


2002 ◽  
Vol 363 (2) ◽  
pp. 411 ◽  
Author(s):  
Raffaella TOSO ◽  
Mirko PINOTTI ◽  
Katherine A. HIGH ◽  
Eleanor S. POLLAK ◽  
Francesco BERNARDI

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4043-4043
Author(s):  
Anita K Gandhi ◽  
Herve Avet-Loiseau ◽  
Michelle Waldman ◽  
Anjan Thakurta ◽  
Sharon L Aukerman ◽  
...  

Abstract Abstract 4043 Background: Cereblon (CRBN), a component of the DDB1-CUL4A-Roc1 ubiquitin ligase complex, has been identified as a target of the immunomodulatory agents thalidomide, lenalidomide, and pomalidomide (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011; Ito et al. Science. 2010.). CRBN binding by these agents mediates their anti-proliferative effects in multiple myeloma (MM) cells (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011). However, the role of CRBN quantification as a marker for disease responsiveness or resistance to these drugs remains to be fully defined. Furthermore, it is unclear whether measuring mRNA or protein expression is the best approach for development of a quantitative CRBN expression assay. In order to define the optimal assay approach, we have studied CRBN mRNA and protein expression in MM cell lines (n=20) and MM patient samples. Methods: CRBN isoform mapping was undertaken using a nested PCR approach and Sanger sequencing. Commercially available and newly generated rabbit anti-CRBN antibodies were characterized with recombinant human CRBN protein and MM cell line extracts via western blot analysis. Results: Our data show that in addition to the transcript for full length protein (GenBank Accession NM_016302.3), in MM cells there are at least 6 alternatively spliced isoforms of CRBN as depicted in Figure 1. Five of the 6 CRBN isoforms (CRBN-003, -004, -005, -006, and -007) contain novel splice junctions not previously described. In addition, 3 of the identified transcripts (CRBN-002, -003, and -005) contain in-frame ORFs, suggesting they encode variants of CRBN protein. Of note, exon 10, which contains a portion of the IMiD-binding domain, is not present in CRBN-002. The functional consequence of CRBN-002 remains to be elucidated, but may be a marker of drug resistance. In order to measure CRBN protein levels, we developed and characterized three rabbit monoclonal antibodies to CRBN including antibody CRBN65, which has the potential to discriminate between the different CRBN protein products, including CRBN-002 by western blot analysis. Additionally, we compared 8 commercially available CRBN antibodies. Western blot analysis of cell lines with commercial and newly developed antibodies identified full length protein at 51 kD. Most commercial antibodies also identified multiple bands of other sizes which may represent CRBN protein variants; however, many are likely non-specific bands as they are larger than full-length CRBN. Conclusion: We have identified novel splice variants of CRBN from MM cell lines and primary tumor samples. The structure of the isoforms and their potential ability to be translated into several protein variants of CRBN reflect the complex regulation of the CRBN gene. These data suggest that accurate quantification of CRBN mRNA level in clinical studies may require measurement of both full-length CRBN mRNA as well as other mRNA isoforms. Currently available primers and gene expression arrays are not capable of identifying and/or resolving the complex set of CRBN isoforms present in cells. These data also demonstrate that CRBN65 is a highly specific and sensitive antibody that could be used for detection of CRBN and its key variants. Taken together, our data emphasize the importance for developing standardized reagents and assays for both mRNA and protein level measurement of CRBN before using them as markers for clinical response or resistance. Disclosures: Gandhi: Celgene Corp: Employment, Equity Ownership. Waldman:Celgene Corp: Employment, Equity Ownership. Thakurta:Celgene Corp: Employment, Equity Ownership. Aukerman:Celgene Corp: Employment, Equity Ownership. Chen:Celgene Corp: Employment, Equity Ownership. Mendy:Celgene Corp.: Employment, Equity Ownership. Rychak:Celgene Corp: Employment, Equity Ownership. Miller:Celgene Corp: Employment, Equity Ownership. Gaidarova:Celgene Corp: Employment, Equity Ownership. Gonzales:Celgene Corp: Employment, Equity Ownership. Cathers:Celgene Corp: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Daniel:Celgene Corporation: Employment. Lopez-Girona:Celgene Corp: Employment, Equity Ownership. Chopra:Celgene Corp: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document