scholarly journals Proteomic profiles of unilateral cryptorchidism in pigs at different ages using MALDI-TOF mass spectrometry and in-gel digestion coupled with mass spectrometry (GeLC-MS/MS) approaches

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Nathamon Yimpring ◽  
Sittiruk Roytrakul ◽  
Janthima Jaresitthikunchai ◽  
Narumon Phaonakrop ◽  
Sucheewin Krobthong ◽  
...  

Abstract Background Cryptorchidism is a condition that occurs when one or both testes fail to descend into the scrotum. It is a common congenital disorder, causing economic loss in pig production. However, there have been only limited studies of differential protein expression profiles in undescended testes (UDTs) in the abdomen and descended testes (DTs) in cryptorchid pigs, especially at the peptidome and proteome levels. The present study aimed to analyze the peptidome of UDTs and DTs in unilateral cryptorchid pigs aged 1–2, 6, 15 and 20 weeks and in normal testes of healthy pigs aged 1–2 and 12 weeks, using peptide mass fingerprinting and three-dimensional principal component analysis (3D-PCA) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and to identify potential protein candidates, using in-gel digestion coupled with mass spectrometry (GeLC-MS/MS). Western blot analysis was used to verify protein expression. Protein sequence was affirmed by liquid chromatography–tandem mass spectrometry. Results A PCA plot showed a discrete cluster for each sample group. Peptide mass fingerprints (PMFs) demonstrated unique peptide fragments in UDTs at different ages. A number of markedly expressed proteins from GeLC-MS/MS were identified, including the multifunctional tumor necrosis factor receptor superfamily member 18 (TNFRSF18), in DTs at 1–2 and 6 weeks and in UDTs at 15 and 20 weeks of age. Using western blot analysis, high expression of TNFRSF18 was observed in the UDTs at 15 weeks. Using the STITCH database, this protein was found to be related to apoptosis, corresponding to the previous report in the UDTs at the same age. Conclusions The present study revealed the specific PMFs and clusters for porcine cryptorchidism, and a novel protein, TNFRSF18, associated with the disease mechanism. These results could provide further insights into the pathogenesis of the disease.

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Wazir Abdullahi ◽  
Hrvoje Brzica ◽  
Patrick Ronaldson

Introduction: Stroke is a leading cause of mortality and morbidity. Several drugs with neuroprotective properties have been proposed for stroke treatment but many have failed in clinical trials. These failures may be due to limited drug permeability across the blood-brain barrier (BBB). Targeting endogenous BBB uptake transporters (i.e., organic anion transporting polypeptides (Oatps)) is a novel approach that can improve CNS delivery of drugs relevant to stroke therapy (i.e., statins). Optimal CNS drug delivery via Oatp in the setting of stroke requires characterization of regulatory pathways such as transforming growth factor (TGF)-β signaling. The goal of the present study was to investigate, in vivo , involvement of TGF-β signaling via the activin-like kinase (ALK)-1 receptor on Oatp1a4 expression at the BBB. Methods: Female Sprague-Dawley rats (200-250 g) were administered bone morphogenic protein-9 (BMP-9; 0-5 μg/kg, i.p.), an ALK1 agonist, or vehicle (i.e., 0.9% saline). Inhibition experiments were performed using LDN193189 (0-5 mg/kg, i.p.), an ALK1 antagonist. Western blot analysis and fluorescence microscopy of isolated brain microvessels were used to determine protein expression and localization in rat brain microvessels respectively. Results: Fluorescence staining demonstrated localization of Oatp1a4 and ALK1 in rat brain microvessels. Western blot analysis showed a dose dependent increase in Oatp1a4 protein expression in brain microvessels isolated from BMP-9 treated rats as compared to controls. Treatment with 0.5 μg/kg and 5 μg/kg BMP-9 resulted in a 55% and 116% increase in Oatp1a4 protein expression, implying that activation of ALK1 signaling can up-regulate Oatp1a4 at the brain microvasculature. In contrast, 6 h treatment with LDN193189 did not alter Oatp1a4 expression across a dose range of 0-5 mg/kg, suggesting that ALK1 inhibition does not modulate basal Oatp1a4 expression at the BBB. Conclusions: Taken together, our data implies that TGF-β/ALK1 signaling may play a role in altering Oatp1a4 protein expression at the BBB. Studies are currently being undertaken in our laboratory to fully characterize the role of TGF-β/ALK1 signaling in determining CNS delivery of drugs relevant to stroke treatment (i.e., statins).


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Spencer Barnhill ◽  
Prakash Arumugam ◽  
John Matsuura ◽  
Scott Berceli ◽  
Katie Carroll ◽  
...  

Interleukin-2 (IL-2) is primarily known as a soluble cytokine that regulates T cell responses. We previously reported, however, that IL-2 is retained in the extracellular matrix by association with perlecan, a heparan sulfate proteoglycan (HSPG). Perlecan is the main HSPG in vascular basement membranes, and previous studies from our laboratory demonstrated that, in human arteries, vascular smooth muscle cells (VSMC) are surrounded by perlecan-bound IL-2. We also noted that IL-2 deficient mice lose SMCs with age, leading to widened esophagi and aortic aneurysms. Given this information, we hypothesized that IL-2 has a direct impact on VSMC, and that VSMC express functional IL-2 receptors (IL-2R). We therefore examined both protein and mRNA expression of each of the three IL-2R subunits (alpha, beta, gamma) on human VSMC grown from arterial explants. These VSMC expressed SMC actin, smooth muscle myosin heavy chain, and when quiescent, smoothelin. Protein expression was assessed by in cell Western and by Western blot analysis. Receptor expression was evaluated under distinct culture conditions, which yielded highly proliferative, intermediate, or quiescent VSMC. Contractile protein expression was low, intermediate, or high, respectively, consistent with the characteristics of proliferating vs quiescent SMCs. Each phenotype expressed all 3 subunits of the IL-2R. IL-2 subunits appeared to follow a cytoskeletal pattern in cells expressing high levels of contractile proteins. Western blot analysis of VSMC lysates revealed expression of all 3 receptors at molecular weights identical to lysates from a T cell line. VSMCs also expressed mRNA for each receptor subunit. Functionally, IL-2 promoted migration (using a Boyden chamber assay) and proliferation in a dose dependent fashion. Because excess proliferation and migration are critical to intimal hyperplasia, we asked whether IL-2 levels change under conditions known to generate intimal hyperplasia. In a rabbit model, IL-2 mRNA increased in venous grafts exposed to high flow for 2h. IL-2 levels, by Western blot, were also increased in human hyperplastic veins. In conclusion, these data show that VSMC have functional IL-2R, and suggest that IL-2 may contribute to the development of intimal hyperplasia.


Author(s):  
Storm N. S. Reid ◽  
Joung-Hyun Park ◽  
Yunsook Kim ◽  
Yi Sub Kwak ◽  
Byeong Hwan Jeon

Exogenous lactate administration has more recently been investigated for its various prophylactic effects. Lactate derived from potential functional foods, such as fermented oyster extract (FO), may emerge as a practical and effective method of consuming exogenous lactate. The current study endeavored to ascertain whether the lactate derived from FO may act on muscle cell biology, and to what extent this may translate into physical fitness improvements. We examined the effects of FO in vitro and in vivo, on mouse C2C12 cells and exercise performance indicators in mice, respectively. In vitro, biochemical analysis was carried out to determine the effects of FO on lactate content and muscle cell energy metabolism, including adenosine triphosphate (ATP) activity. Western blot analysis was also utilized to measure the protein expression of total adenosine monophosphate-activated protein kinase (AMPK), p-AMPK (Thr172), lactate dehydrogenase (LDH), succinate dehydrogenase (SDHA) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in response to FO administration. Three experimental groups were formed: a positive control (PC) treated with 1% horse serum, FO10 treated with 10 μg/mL and FO50 treated with 50 μg/mL. In vivo, the effects of FO supplementation on exercise endurance were measured using the Rota-rod test, and Western blot analysis measured myosin heavy-chain 2 (MYH2) to assess skeletal muscle growth, alongside p-AMPK, total-AMPK, PGC-1α, cytochrome C and UCP3 protein expression. Biochemical analysis was also performed on muscle tissue to measure the changes in concentration of liver lactate, lactate dehydrogenase (LDH), glycogen and citrate. Five groups (n = 10/per group) consisted of a control group (CON), exercise group (Ex), positive control treated with Ex and 500 mg/kg Taurine (Ex-Tau), Ex and 100 mg/kg FO supplementation (Ex-FO100) and Ex and 200 mg/kg FO supplementation (Ex-FO200) orally administered over the 4-week experimental period.FO50 significantly increased PGC-1α expression (p < 0.001), whereas both FO10 and FO50 increased the expression of p-AMPK (p < 0.001), in C2C12 muscle cells, showing increased signaling important for mitochondrial metabolism and biogenesis. Muscle lactate levels were also significantly increased following FO10 (p < 0.05) and FO50 (p < 0.001). In vivo, muscle protein expression of p-AMPK (p < 0.05) and PGC-1α were increased, corroborating our in vitro results. Cytochrome C also significantly increased following FO200 intake. These results suggest that the effects of FO supplementation may manifest in a dose-response manner. FO administration, in vitro, and supplementation, in vivo, both demonstrate a potential for improvements in mitochondrial metabolism and biogenesis, and even for potentiating the adaptive effects of endurance exercise. Mechanistically, lactate may be an important molecule in explaining the aforementioned positive effects of FO.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4043-4043
Author(s):  
Anita K Gandhi ◽  
Herve Avet-Loiseau ◽  
Michelle Waldman ◽  
Anjan Thakurta ◽  
Sharon L Aukerman ◽  
...  

Abstract Abstract 4043 Background: Cereblon (CRBN), a component of the DDB1-CUL4A-Roc1 ubiquitin ligase complex, has been identified as a target of the immunomodulatory agents thalidomide, lenalidomide, and pomalidomide (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011; Ito et al. Science. 2010.). CRBN binding by these agents mediates their anti-proliferative effects in multiple myeloma (MM) cells (Lopez-Girona et al. Leukemia. 2012; Zhu et al. Blood. 2011). However, the role of CRBN quantification as a marker for disease responsiveness or resistance to these drugs remains to be fully defined. Furthermore, it is unclear whether measuring mRNA or protein expression is the best approach for development of a quantitative CRBN expression assay. In order to define the optimal assay approach, we have studied CRBN mRNA and protein expression in MM cell lines (n=20) and MM patient samples. Methods: CRBN isoform mapping was undertaken using a nested PCR approach and Sanger sequencing. Commercially available and newly generated rabbit anti-CRBN antibodies were characterized with recombinant human CRBN protein and MM cell line extracts via western blot analysis. Results: Our data show that in addition to the transcript for full length protein (GenBank Accession NM_016302.3), in MM cells there are at least 6 alternatively spliced isoforms of CRBN as depicted in Figure 1. Five of the 6 CRBN isoforms (CRBN-003, -004, -005, -006, and -007) contain novel splice junctions not previously described. In addition, 3 of the identified transcripts (CRBN-002, -003, and -005) contain in-frame ORFs, suggesting they encode variants of CRBN protein. Of note, exon 10, which contains a portion of the IMiD-binding domain, is not present in CRBN-002. The functional consequence of CRBN-002 remains to be elucidated, but may be a marker of drug resistance. In order to measure CRBN protein levels, we developed and characterized three rabbit monoclonal antibodies to CRBN including antibody CRBN65, which has the potential to discriminate between the different CRBN protein products, including CRBN-002 by western blot analysis. Additionally, we compared 8 commercially available CRBN antibodies. Western blot analysis of cell lines with commercial and newly developed antibodies identified full length protein at 51 kD. Most commercial antibodies also identified multiple bands of other sizes which may represent CRBN protein variants; however, many are likely non-specific bands as they are larger than full-length CRBN. Conclusion: We have identified novel splice variants of CRBN from MM cell lines and primary tumor samples. The structure of the isoforms and their potential ability to be translated into several protein variants of CRBN reflect the complex regulation of the CRBN gene. These data suggest that accurate quantification of CRBN mRNA level in clinical studies may require measurement of both full-length CRBN mRNA as well as other mRNA isoforms. Currently available primers and gene expression arrays are not capable of identifying and/or resolving the complex set of CRBN isoforms present in cells. These data also demonstrate that CRBN65 is a highly specific and sensitive antibody that could be used for detection of CRBN and its key variants. Taken together, our data emphasize the importance for developing standardized reagents and assays for both mRNA and protein level measurement of CRBN before using them as markers for clinical response or resistance. Disclosures: Gandhi: Celgene Corp: Employment, Equity Ownership. Waldman:Celgene Corp: Employment, Equity Ownership. Thakurta:Celgene Corp: Employment, Equity Ownership. Aukerman:Celgene Corp: Employment, Equity Ownership. Chen:Celgene Corp: Employment, Equity Ownership. Mendy:Celgene Corp.: Employment, Equity Ownership. Rychak:Celgene Corp: Employment, Equity Ownership. Miller:Celgene Corp: Employment, Equity Ownership. Gaidarova:Celgene Corp: Employment, Equity Ownership. Gonzales:Celgene Corp: Employment, Equity Ownership. Cathers:Celgene Corp: Employment, Equity Ownership. Schafer:Celgene: Employment, Equity Ownership. Daniel:Celgene Corporation: Employment. Lopez-Girona:Celgene Corp: Employment, Equity Ownership. Chopra:Celgene Corp: Employment, Equity Ownership.


2020 ◽  
Vol 10 (5) ◽  
pp. 724-729
Author(s):  
Yaping Xu ◽  
Xiaoqin Fang ◽  
Xianjiang Wei

Objective: The present study aimed to explore the effects and related mechanism of lidocaine on human ovarian cancer cell lines. Methods: Human ovarian cancer cell lines (SKOV3 and ES-2) were treated with different concentrations of lidocaine for different time. We treated SKOV3 and ES-2 cells using lidocaine then used MTT assay and flow cytometry to detect the cell proliferation and cell apoptosis. In addition, we used western blot analysis to explore the protein expression of Bax and Bcl-2 in SKOV3 and ES-2 cells. Western blot analysis and qRT-PCR were performed for the detection of EMT markers (E-cadherin, N-cadherin). The protein expression levels of TRAF3 and p-p65 in SKOV3 and ES-2 cells were determined by Western blot analysis. Results: Compared to the control group, 0.5, 1, 5, and 10 mM of lidocaine significantly inhibited ovarian cancer cell proliferation at different time points, while 0.1 mM of lidocaine had no significant effect. 1, 5 mM of lidocaine induced the cell apoptosis, and observably reduced expression of Bcl-2 protein, but improved Bax expression markedly compared with the control group. Treatment of lidocaine increased E-cadherin expression, but decreased N-cadherin expression when compared with control group. Treatment of lidocaine increased TRAF3 protein expression, but decreased p-p65 protein expression in ES-2 and SKOV3 cells. Conclusion: We demonstrated that lidocaine inhibited cell proliferation, induced apoptosis, and inhibited EMT in ovarian cancer cells via regulating TRAF3/NF-κB pathway.


2018 ◽  
Vol 44 (4) ◽  
pp. 462-472
Author(s):  
Secil Akyildiz Demir ◽  
Volkan Seyrantepe

Abstract Background Cytoplasmic sialidase (NEU2) plays an active role in removing sialic acids from oligosaccharides, glycopeptides, and gangliosides in mammalian cells. NEU2 is involved in various cellular events, including cancer metabolism, neuronal and myoblast differentiation, proliferation, and hypertrophy. However, NEU2-interacting protein(s) within the cell have not been identified yet. Objective The aim of this study is to investigate NEU2 interacting proteins using two-step affinity purification (TAP) strategy combined with mass spectrometry analysis. Methods In this study, NEU2 gene was cloned into the pCTAP expression vector and transiently transfected to COS-7 cells by using PEI. The most efficient expression time of NEU2- tag protein was determined by real-time PCR and Western blot analysis. NEU2-interacting protein(s) were investigated by using TAP strategy combined with two different mass spectrometry experiment; LC-MS/MS and MALDI TOF/TOF. Results Here, mass spectrometry analysis showed four proteins; α-actin, β-actin, calmodulin and histone H1.2 proteins are associated with NEU2. The interactions between NEU2 and actin filaments were verified by Western blot analysis and immunofluorescence analysis. Conclusions Our study suggests that association of NEU2 with actin filaments and other protein(s) could be important for understanding the biological role of NEU2 in mammalian cells.


2017 ◽  
Vol 18 (2) ◽  
pp. 73
Author(s):  
Dwi Esti Febriyantiningsih ◽  
Kartika Senjarini ◽  
Rike Oktarianti

Malaria has been prevalent for a long time in tropical developing regions causing great morbidity and mortality. Among the malaria vectors, Anopheles vagus has been known as secondary malaria vector in East Java. Salivary glands of mosquitoes perform various functions for survival of the vectors and also conducive for blood feeding, harbouring of malaria parasites, and eventual parasite transmission. The salivary gland proteomes of An. vagus have not been carried out yet. The aim of our study was to identify and characterize the immunogenic proteins of salivary glands proteins of An. vagus. A proteomic approach combining one-dimensional electrophoresis (1DE) followed by western blot analysis using human sera from healthy people living in an endemic area (Kendal); liquid chromatography mass spectrometry (LC-MS/MS) and bioinformatic analysis was adopted to provide the first direct insight into identification and characterization of salivary proteins of An. vagus. Identification of immunogenic proteins using western blot analysis has revealed three immunogenic bands which had molecular weights of 69, 75 and 232 kDa. Among those proteins analysed by LC-MS/MS, there were alpha,1-4 glucan phosphorylase, putative myosin class I heavy chain which have the highest number of total spectrum count peptide. Other proteins like vitellogenin and heat shock protein 82 (Hsp82) were also identified. The majority of proteins were scrutinized marked for their role in metabolism, cytoskeleton protein and stress response. Keywords: Anopheles vagus, salivary gland, immunogenic, proteomics


2021 ◽  
Author(s):  
Fanrui Meng ◽  
Mir Hassan Khoso ◽  
Kai Kang ◽  
Qi He ◽  
Yukai Cao ◽  
...  

Abstract Previous study reports that FGF21 could ameliorate hepatic fibrosis, but its mechanisms have not been fully investigated. In this study, three models were used to investigate the mechanism by which FGF21 alleviates liver fibrosis. CCL4 and DMN were respectively used to induce hepatic fibrosis animal models. Our results demonstrated that liver index and liver function were deteriorated in both models. HE and Masson’s staining showed that the damaged tissue architectonics were observed in the mice of both models. Treatment with FGF21 significantly ameliorated these changes. ELISA analysis showed that the serum levels of IL-1β, IL-6 and TNF-α were significantly elevated in both models. However, administration of FGF21 significantly reduced these inflammatory cytokines. RT-PCR and Western blot analysis showed that mRNA and protein expression of collagenI, α-SMA and TGF-β were significantly decreased by treatment with FGF21. PDGF-BB stimulant was used to establish the experimental cell model in HSCs. RT-PCR and Western blot analysis demonstrated that the expression of collagenI and α-SMA were significantly upregulated by this stimulant in model group. Interestingly, our results showed that mRNA and protein expression of leptin were also significantly induced in PDGF-BB treated HSCs. Administration of FGF21 could significantly reduce leptin expression in a dose dependent manner and these effects were reversed in siRNA (against β-klotho) transfected HSCs. Furthermore, the leptin signaling pathways related protein p-ERK/t-ERK, p-STAT3/STAT3 and TGF-β were significantly downregulated by FGF21 treatment in a dose dependent manner. The expression of SOCS3 and Nrf-2 were enhanced by treatment with FGF21. The underlying mechanism may be that FGF21 regulates leptin-STAT3 axis via Nrf-2 and SOCS3 pathway in activated HSCs.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Muneera R Kapadia ◽  
Jason W Eng ◽  
Jozef Murar ◽  
Qun Jiang ◽  
Melina R Kibbe

Introduction: Nitric oxide (NO) is known to inhibit vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome tightly regulates the degradation of most cell cycle proteins. Therefore, we previously studied the relationship between NO and the 26S proteasome, and found that NO directly inhibits 26S proteasome catalytic activity. The purpose of this study was two-fold: to determine the effect of NO on 26S proteasome subunit expression, and to determine the intracellular localization of these subunits. Methods: Protein expression was examined using western blot analysis conducted on rat aortic VSMC exposed to varying concentrations of the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 125–1000 μM) for 24 hours. Intracellular localization was conducted with immunofluorescent staining of VSMC ± exposure to SNAP (500 μM). VSMC were also fractionated into their nuclear and cytoplasmic components and western blot analysis was conducted to confirm localization. Results: Of the 26S proteasome subunits examined, the α5, α6, β1, and inducible β1 subunits demonstrated increased protein expression with increasing concentrations of NO. However, β2, inducible β2, β5, and inducible β5 protein expression did not change with NO exposure. Immunofluorescent staining of VSMC for these subunits confirmed these results. Additionally, each of these subunits showed a distinct pattern of staining: the α5 subunit was mostly perinuclear, the α6 subunit appeared mostly nuclear, and the β1 and inducible β1 subunits were mostly cytoplasmic. Western blot analysis following nuclear and cytoplasmic separation confirmed that α5, β1, and inducible β1 subunits were mostly in the cytoplasmic fraction. Interestingly, while the α6 subunit localizes to the nucleus by immunofluorescent staining, western blotting showed it to be mostly in the cytoplasmic fraction, indicating that its cellular distribution is perinuclear. Conclusion: Our data indicate that the 26S proteasome subunits have distinct patterns of intracellular localization, and are differentially regulated by NO. Understanding the relationship between NO and the 26S proteasome provides insight into the mechanism by which NO inhibits VSMC proliferation.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Tomotake Tokunou ◽  
Chikahiro Sankoda ◽  
Aya Watanabe ◽  
Yusuke Takahara ◽  
Hiroshi Kojima ◽  
...  

Background: Macrophage migration to the vessels is important for vascular inflammation and induces vascular degenerative diseases. Macrophages secrete matrix metalloprotainases (MMPs), which activate many cytokines and digest extracellular matrix of aorta. MMPs play an important role in the progression of aortic aneurysm. We previously reported that non-specific prolyl hydroxylase domain protein (PHD) inhibitor, Cobalt chloride (CoCl2), suppressed MMP-2 and -9 expression and attenuated experimental abdominal aortic aneurysm (AAA) formation in mice. In this report we investigated the myeloid specific PHD2 knockout effect on MMPs expression and aneurysm formation. Methods: Myeloid specific PHD2 conditional knockout (MyPHD2KO) mice were generated. Experimental AAA was induced by periaortic application of Calcium chloride (CaCl2) for 6 weeks. In vitro Lipopolysaccharide (LPS, 100ng/ml) was used to induce MMP-2 and MMP-9 expression with peritoneal macrophages. MMPs mRNA, protein expression and protein activity were analyzed by qRT-PCR, Western blot analysis and Zymography, respectively. ELISA-based NF-κB p65 Transcription Factor Assay was used to examine NF-κB p65 binding activity with consensus DNA binding site. Results: CaCl2-induced AAA was suppressed with MyPHD2KO mice (max diameter of aneurysm: 1.03mm±0.14mm in MyPHD2KO group, 1.63mm±0.34mm in Control AAA group, p<0.01). In peritoneal macrophages CoCl2 reduced LPS-induced MMP-2 and MMP-9 mRNA and protein expression. PHD2 deletion in peritoneal macrophages from MyPHD2KO mice also suppressed LPS-induced MMP-2 and MMP-9 mRNA, protein expression and activity. PHD2 deletion suppressed LPS-induced NF-κB p65 phosphorylation via IκBα stabilization by Western blot analysis. NF-κB p65 binding activity was suppressed in MyPHD2KO macrophages (p<0.01 vs control). Conclusion: Deletion of PHD2 in myeloid lineage attenuated MMPs expression by NF-κB inactivation and suppressed AAA formation. PHD2 in macrophage may be a novel target for cardiovascular disease treatment.


Sign in / Sign up

Export Citation Format

Share Document