scholarly journals Nanopore-Based DNA Analysis via Graphene Electrodes

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Qing Zhao ◽  
Yang Wang ◽  
Jianjin Dong ◽  
Lina Zhao ◽  
X. F. Rui ◽  
...  

We propose an improvement for nanopore-based DNA analysis via transverse transport using graphene as transverse electrodes. Our simulation results show conspicuous distinction of tunneling current during translocation of different nucleotides through nanopore. Applying the single-atom thickness property of graphene, our findings demonstrate the feasibility of using graphene as transverse electrodes in future rapid and low-cost genome sequencing.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


2021 ◽  
Vol 536 ◽  
pp. 147809
Author(s):  
Mingming Luo ◽  
Zhao Liang ◽  
Chao Liu ◽  
Xiaopeng Qi ◽  
Mingwei Chen ◽  
...  

2015 ◽  
Vol 36 (4) ◽  
pp. 387-389 ◽  
Author(s):  
Gabriela A. Rodriguez-Ruiz ◽  
Edmundo A. Gutierrez-Dominguez ◽  
Arturo Sarmiento-Reyes ◽  
Zlatan Stanojevic ◽  
Hans Kosina ◽  
...  

2006 ◽  
Vol 519-521 ◽  
pp. 949-954 ◽  
Author(s):  
Beong Bok Hwang ◽  
J.H. Shim ◽  
Jung Min Seo ◽  
H.S. Koo ◽  
J.H. Ok ◽  
...  

This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion in both combined and sequence operation. A commercially available finite element program, which is coded in the rigid-plastic finite element method, has been employed to investigate the forming load characteristics. AA 2024 aluminum alloy is selected as a model material. The analysis in the present study is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can component with different outer diameters are categorized to estimate quantitatively the force requirement for forming forward-backward can part, forming energy, and maximum pressure exerted on the die-material interfaces, respectively. The categorized processes are composed of combined and/or some basic extrusion processes such as sequence operation. Based on the simulation results about forming load characteristics, the frame capacity of a mechanical press of crank-drive type suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is suggested that different load capacities be selected for different dimensions of a part such as wall thickness in forward direction and etc. It is concluded quantitatively from the simulation results that the combined operation is superior to sequence operation in terms of relatively low forming load and thus it leads to low cost for forming equipments. However, it is also known from the simulation results that the precise control of dimensional accuracy is not so easy in combined operation. The results in this paper could be a good reference for analysis of forming process for complex parts and selection of proper frame capacity of a mechanical press to achieve low production cost and thus high productivity.


2021 ◽  
Author(s):  
Nusrat Jahan Surovy

Ultrasound imaging is a widely used noninvasive imaging technique for biomedical and other applications. Piezoelectric devices are commonly used for the generation and detection of ultrasound in these applications. However, implementation of two-dimensional arrays of piezoelectric transducers for 3D ultrasound imaging is complex and expensive. Optical Fabry-Perot interferometry is an attractive alternative to the piezoelectric devices for detection of ultrasound. In this method a thin film etalon is constructed and used. Light reflected from the two surfaces of this thin film produces an intensity which depends on the film thickness. When ultrasound is incident on the film, it changes the thickness of the film and consequently modulates the light intensity on the film. In our work, we made two types of etalon (Finesse 2) for our experiment. We detected lower frequency ultrasound (0.5 MHz or 1 MHz) using the build etalon. We determined a linear relationship between the strength of the optical signals and the exerted pressure on a film by the ultrasound. The dependence of the etalon performance on the light wavelength was demonstrated indirectly by measuring the signal at various light incidence angle. Simulation results are also presented. Lastly, we proposed the optimum design of this detection system based on the simulation results. This method of ultrasound detection can be a potential low-cost approach for 3D ultrasound imaging.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yonggang Xiao ◽  
Jubing Zhang ◽  
Jie Cao ◽  
Changhong Li

The prefabricated urban utility tunnels (UUTs) have many advantages such as short construction period, low cost, high quality, and small land occupation. However, there is still a lack of in-depth analysis of the mechanical performance of the prefabricated urban utility tunnel (UUT) structure with bolted connections under different working conditions. In this paper, the force performance of a prefabricated UUT in Tongzhou District, Beijing, was studied under different working conditions using two methods: field monitoring and numerical simulation. The multichannel strain monitor was used for monitoring, and the internal wall concrete and bolt strain change data under the two conditions of installation and backfill were obtained. Combined with the construction process of the UUTs, a three-dimensional numerical model was established by COMSOL, where the build-in bolt assembly was used to simulate the longitudinal connection of the tunnel. The simulation results were compared with the measured data to verify the rationality of the computational model. The simulation results showed that the concrete and bolts on the inner wall of the tunnel work well under the two conditions of installation and backfilling; The deformation of the top plate of the prefabricated tunnel was approximately parabolic, with the largest vertical displacement (0.37 mm) in the middle and the most sensitive to the vertical load in the central part of the roof. The central portion of the side wall had the largest displacement (0.17 mm) in the inner concave. The tensile stress of bolt 3 increased the most (30.75 MPa) but was still much smaller than the yield strength of the bolt. The concrete and bolts of the UUT were found to work well through force analysis under operating conditions. In conclusion, analysis of structural forces and deformation failure modes will help design engineers understand the basic mechanisms and select the appropriate UUT structure.


Today in communication field, many antennas have been evolved for various applications. The most popularly used antennas are micro-strip antennas. These antennas can be easily fabricated at reasonably low cost. Hence, these antennas are gaining lot of importance in recent times. Many techniques have been in use for micro strip antennas to improve the performance of the antenna parameters. The design of these antennas is slowly moving towards high frequencies, where there is lot of advantage with bandwidth. In this paper a normal and E shaped inset micro-strip antenna in Ku-Band is simulated and the results are presented. It is noted that CST-MS 2015 tool has been used to get the simulation results.


2018 ◽  
Vol 15 (1) ◽  
pp. 27-46
Author(s):  
Qiong Hu ◽  
Hanhua Chen ◽  
Hai Jin ◽  
Chen Tian ◽  
Aobing Sun ◽  
...  

Datacenter networks have attracted a lot of research interest in the past few years. BCube is proved to be a promising scheme due to its low cost. By using a recursive construction scheme, BCube can exponentially scale a datacenter. Industry experiences, however, articulate the importance of incremental expansion of datacenter. In this article, the authors show that BCube's expanding scheme suffers low utilization of switch ports. They propose IBCube, a novel economical design for incrementally building datacenter networks. The insight is that: by letting the number of switches in each BCube layer equal the number of the building blocks, the authors can enable the switch ports to be fully utilized to support the total number of network interface cards of the deployed servers in the datacenters. Accordingly, their IBCube designs a novel automatic port allocation scheme. Simulation results show that the IBCube design reduces the budget for the datacenter networks by 94% as well as improves the packet delay and throughput by 10.3% and 11.5%, respectively, compared to the previous partial BCube design.


Author(s):  
Congcong Zhang ◽  
Yongliang Wang ◽  
Rixiu Men ◽  
Hong He ◽  
Wei Chen

Floating-ring bearings are commonly used in automotive turbocharger applications due to their low cost and their suitability under extreme rotation speeds. This type of bearings, however, can become a source of noise due to oil whirl-induced sub-synchronous vibrations. The scope of this paper is to examine whether the concept of a floating-ring bearing with an elliptical clearance might be a solution to suppress sub-synchronous vibrations. A very time-efficient approximate solution for the Reynolds equation to the geometry of elliptical bearings is presented. The nonlinear dynamic behaviors of a turbocharger rotor supported by two concepts of elliptical floating-ring bearings are systematically investigated using run-up simulations. For the first concept of elliptical floating-ring bearings i.e. the outer bearing of the floating-ring bearing changed in the form of elliptical pattern (see Figure 1(b) in the article), some studies have pointed out that its steady-state and dynamic performances are superior to plain cylindrical floating-ring bearings but, the nonlinear run-up simulation results shown that this type of elliptical floating-ring bearings is not conducive to reduce the self-excited vibration levels. However, for the second type of elliptical floating-ring bearings i.e. both the inner and outer films of the floating-ring bearing changed in the form of elliptical pattern (see Figure 1(c) in the article), it is shown that the sub-synchronous vibrations have been considerably suppressed. Hence, the second noncircular floating-ring bearing design is an attractive measure to suppress self-excited vibrations.[Figure: see text]


Sign in / Sign up

Export Citation Format

Share Document