scholarly journals Basic Potential of Carbon Nanotubes in Tissue Engineering Applications

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hisao Haniu ◽  
Naoto Saito ◽  
Yoshikazu Matsuda ◽  
Tamotsu Tsukahara ◽  
Yuki Usui ◽  
...  

Carbon nanotubes (CNTs) are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs)in vivoandin vitrofor the promotion of tissue regeneration as safe scaffold materials. We recently showed that intracellular accumulation is important for the cytotoxicity of CNTs, and we reported the active physiological functions CNTs in cells. In this review, we describe the effects of CNTsin vivoandin vitroobserved by our group from the standpoint of tissue engineering, and we introduce the findings of other research groups.

2017 ◽  
Vol 37 (9) ◽  
pp. 933-941 ◽  
Author(s):  
Mohammad Mahdi Safikhani ◽  
Ali Zamanian ◽  
Farnaz Ghorbani ◽  
Azadeh Asefnejad ◽  
Mostafa Shahrezaee

Abstract Tissue engineering is a biotechnology that is used to develop biological substitutes to restore, maintain, or improve functions. Thus, the porous scaffolds are used to accommodate cells in tissue engineering. In this research, three dimensional (3D) bi-layered polyurethane (PU)-gelatin nanofibrous scaffolds were prepared by the electrospinning method, after which the capability of the released heparin as an anti-coagulation factor was evaluated. Electrospinning has been extensively investigated for the preparation of fibers that exhibit a high surface area to volume ratio. Results showed that scanning electron microscopy (SEM) micrographs exhibited a smooth surface as well as a highly porous and bead-free structure, in which fibers were distributed in the range of 100–600 nm. The modulus and ultimate tensile strength (UTS) decreased and increased, respectively, after crosslinking the reaction of polymers. This process also reduced swelling ratio, the hydrolytic biodegradation rate, and the release rate as a function of time. Moreover, an in vitro assay demonstrated that 3D nanofibrous scaffolds supported L929 fibroblast cell viability and that cells adhered and spread on the fibers. Based on the obtained results, the heparin-loaded electrospinning nanofibrous scaffolds have initial physicochemical and mechanical properties to protect neo-tissue formation.


2021 ◽  
Vol 06 ◽  
Author(s):  
Varun Saxena ◽  
Lalit Pandey ◽  
T. S. Srivatsan

Background: Hydroxyapatite (HAp) is one of the most studied biomimic for biomedical applications. Specially, nano-HAp has been utilized for bone tissue engineering various orthopedic applications. HAp possesses various suitable properties such as bioactivity, biodegradability and cell proliferation efficiency for bone tissue engineering applications. Yet, lacks in self-antibacterial activity, high surface area and target efficiency. Results: In this directioon, researchers have focused on exploring the required surface as well as the inherent properties of HAp at the nanoscale. These properties are largely dependent on the composition, size and morphology of the nano-HAp. Hence, nano-HAp has been found to be an excellent candidate with an attractive combination of properties for selection and use in biomedical applications, those required to enhanced biological responses. Further, depending on the type of application, these factors can be tuned to optimize the performance. Conclusion: In this review article, we focus on the chemical structure of HAp and the routes chosen and used for the synthesis of the nano-HAp. The role of various parameters in controlling synthesis at the nanoscale are presented and briefly discussed. In addition, we provide an overview of the various applications for the pristine and doped nano-HAp with recent examples in areas spanning the following: (i) bone tissue engineering applications, (ii) drug delivery applications, (iii) surface coatings, and (iv) scaffolds. The effect of chemical composition on the mechanical properties, surface properties and biological properties are also highlighted. Nano-HAp is found to be highly proficient for its biomedical applications, especially for bone tissue engineering applications. The nano-sized properties enhances the biological responses. The dopant ions that replaces the Ca ion into the hydroxyapatite (HAp) lattice plays a crucial role in its biomedical applications


2005 ◽  
Vol 288-289 ◽  
pp. 139-142 ◽  
Author(s):  
Xian Tao Wen ◽  
Hong Song Fan ◽  
Yan Fei Tan ◽  
H.D. Cao ◽  
H. Li ◽  
...  

A electrospinning process to prepare soft tissue engineering scaffold was introduced in this study. This kind of scaffold was composed with ultrathin fiber and characterized with high porosity, well-interconnected pores and high surface-to-volume ratio. Biodegradable polylaticacid (PLA) was used to spin the scaffold and the scaffold was evaluated in vitro by analysis the microscopic structure, porosity, mechanical property, especially cytocompatibility. The results indicated that the electrospun PLA scaffold showed good cytocompatibility and the tensile property of electrospun scaffold was similar to human’s soft tissue. It could be expected that the electrospun scaffold would be potential in soft tissue engineering or soft tissue repair.


2015 ◽  
Vol 128 ◽  
pp. 347-356 ◽  
Author(s):  
Kavitha Kandiah ◽  
Rajendran Venkatachalam ◽  
Chunyan Wang ◽  
Suresh Valiyaveettil ◽  
Kumaresan Ganesan

Author(s):  
Bhupesh Chandra ◽  
Joshua T. Kace ◽  
Yuhao Sun ◽  
S. C. Barton ◽  
James Hone

In recent years carbon nanotubes have emerged as excellent materials for applications in which high surface area is required e.g. gas sensing, hydrogen storage, solar cells etc. Ultra-high surface to volume ratio is also a desirable property in the applications requiring enhanced catalytic activity where these high surface area materials can act as catalyst supports. One of the fastest developing areas needing such materials is fuel-cell. Here we investigate the process through which carbon nanotubes can be manufactured specifically to be used to increase the surface area of a carbon paper (Toray™). This carbon support is used in bio-catalytic fuel cell as an electrode to support enzyme which catalyzes the redox reaction. Deposition of nanotubes on these carbon fibers can result in great enhancement in the overall surface area to support the enzyme, which increases the reaction rate inside the fuel cell. The present paper describes a method to achieve ultra-thick growth of multiwall carbon nanotubes (MWNT) on a carbon Toray™ paper using a joule heating process and gas-phase catalyst. Using this method, we are able to achieve rapid, high-density, and uniform MWNT growth. This method is also potentially scalable toward larger-scale production.


2017 ◽  
Vol 01 (04) ◽  
pp. 1750011 ◽  
Author(s):  
Shounak Roy ◽  
Amit Jaiswal

Graphene and graphene-based nanomaterials such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene quantum dots (GQDs) have gained a lot of attention from diverse scientific fields for applications in sensing, catalysis, nanoelectronics, material engineering, energy storage and biomedicine due to its unique structural, optical, electrical and mechanical properties. Graphene-based nanomaterials emerge as a novel class of nanomedicine for cancer therapy for several reasons. Firstly, its structural properties like high surface area and aromaticity enables easy loading of hydrophobic drugs. Secondly, presence of oxygen containing functional groups improve its physiological stability and also act as site for biofunctionalization. Thirdly, its optical absorption in the NIR region enable them to act as photoagents for photothermal and photodynamic therapies of cancer, both in vitro and in vivo. Finally, its intrinsic fluorescence property helps in bioimaging of cancer cells. Overall, graphene-based nanomaterials can act as agents for developing multifunctional theranostic platforms for carrying out more efficient detection and treatment of cancers. This review provides a detailed summary of the different applications of graphene-based nanomaterials in drug delivery, nucleic acid delivery, phototherapy, bioimaging and theranostics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. E. A. Botteon ◽  
L. B. Silva ◽  
G. V. Ccana-Ccapatinta ◽  
T. S. Silva ◽  
S. R. Ambrosio ◽  
...  

AbstractGold nanoparticles (AuNPs) are highlighted due to their low toxicity, compatibility with the human body, high surface area to volume ratio, and surfaces that can be easily modified with ligands. Biosynthesis of AuNPs using plant extract is considered a simple, low-cost, and eco-friendly approach. Brazilian Red Propolis (BRP), a product of bees, exhibits anti-inflammatory, anti-tumor, antioxidant, and antimicrobial activities. Here, we described the biosynthesis of AuNPs using BRP extract (AuNPextract) and its fractions (AuNPhexane, AuNPdichloromethane, AuNPethyl acetate) and evaluated their structural properties and their potential against microorganisms and cancer cells. AuNPs showed a surface plasmon resonance (SPR) band at 535 nm. The sizes and morphologies were influenced by the BRP sample used in the reaction. FTIR and TGA revealed the involvement of bioactive compounds from BRP extract or its fractions in the synthesis and stabilization of AuNPs. AuNPdichloromethane and AuNPhexane exhibited antimicrobial activities against all strains tested, showing their efficacy as antimicrobial agents to treat infectious diseases. AuNPs showed dose-dependent cytotoxic activity both in T24 and PC-3 cells. AuNPdichloromethane and AuNPextract exhibited the highest in vitro cytotoxic effect. Also, the cytotoxicity of biogenic nanoparticles was induced by mechanisms associated with apoptosis. The results highlight a potential low-cost green method using Brazilian red propolis to synthesize AuNPs, which demonstrated significant biological properties.


2010 ◽  
Vol 107 (5) ◽  
pp. 2213-2218 ◽  
Author(s):  
Juliana M. Chan ◽  
Liangfang Zhang ◽  
Rong Tong ◽  
Debuyati Ghosh ◽  
Weiwei Gao ◽  
...  

There are a number of challenges associated with designing nanoparticles for medical applications. We define two challenges here: (i) conventional targeting against up-regulated cell surface antigens is limited by heterogeneity in expression, and (ii) previous studies suggest that the optimal size of nanoparticles designed for systemic delivery is approximately 50–150 nm, yet this size range confers a high surface area-to-volume ratio, which results in fast diffusive drug release. Here, we achieve spatial control by biopanning a phage library to discover materials that target abundant vascular antigens exposed in disease. Next, we achieve temporal control by designing 60-nm hybrid nanoparticles with a lipid shell interface surrounding a polymer core, which is loaded with slow-eluting conjugates of paclitaxel for controlled ester hydrolysis and drug release over approximately 12 days. The nanoparticles inhibited human aortic smooth muscle cell proliferation in vitro and showed greater in vivo vascular retention during percutaneous angioplasty over nontargeted controls. This nanoparticle technology may potentially be used toward the treatment of injured vasculature, a clinical problem of primary importance.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2588
Author(s):  
Nader Tanideh ◽  
Negar Azarpira ◽  
Najmeh Sarafraz ◽  
Shahrokh Zare ◽  
Aida Rowshanghiyas ◽  
...  

Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-9
Author(s):  
Jiacan Su ◽  
Zhiwei Wang ◽  
Yonggang Yan ◽  
Yongfa Wu ◽  
Liehu Cao ◽  
...  

Nanoporous calcium silicate (n-CS) with high surface area was synthesized using the mixed surfactants of EO20PO70EO20(polyethylene oxide)20(polypropylene oxide)70(polyethylene oxide)20, P123) and hexadecyltrimethyl ammonium bromide (CTAB) as templates, and its composite with poly(lactic acid-co-glycolic acid) (PLGA) were fabricated. The results showed that the n-CS/PLGA composite (n-CPC) with 20 wt% n-CS could induce a dense and continuous layer of apatite on its surface after soaking in simulated body fluid (SBF) for 1 week, suggesting the excellent in vitro bioactivity. The n-CPC could promote cell attachment on its surfaces. In addition, the proliferation ratio of MG63cells on n-CPC was significantly higher than PLGA; the results demonstrated that n-CPC had excellent cytocompatibility. We prepared n-CPC scaffolds that contained open and interconnected macropores ranging in size from 200 to 500 μm. The n-CPC scaffolds were implanted in femur bone defect of rabbits, and thein vivobiocompatibility and osteogenicity of the scaffolds were investigated. The results indicated that n-CPC scaffolds exhibited good biocompatibility, degradability, and osteogenesis in vivo. Collectively, these results suggested that the incorporation of n-CS in PLGA produced biocomposites with improved bioactivity and biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document