scholarly journals Anti-Inflammatory Effects of Concentrated Ethanol Extracts of Edelweiss (Leontopodium alpinumCass.) Callus Cultures towards Human Keratinocytes and Endothelial Cells

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Lulli Daniela ◽  
Potapovich Alla ◽  
Riccardo Maurelli ◽  
Dellambra Elena ◽  
Pressi Giovanna ◽  
...  

Edelweiss (Leontopodium alpinumCass.) is traditionally employed in folk medicine as an anti-inflammatory remedy. In nature, the plant is sparsely available and protected; therefore production of callus cultures was established. A concentrated ethanolic extract of culture homogenate, with leontopodic acid representing55±2% of the total phenolic fraction (ECC55), was characterized for anti-inflammatory properties in primary human keratinocytes (PHKs) and endotheliocytes (HUVECs). Inflammatory responses were induced by UVA+UVB, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), and a mixture of proinflammatory cytokines. Trichostatin A, a sirtuin inhibitor, was used to induce keratinocyte inflammatory senescence. ECC55 (10–50 μg/mL) protected PHK from solar UV-driven damage, by enhancing early intracellular levels of nitric oxide, although not affecting UV-induced expression of inflammatory genes. Comparison of the dose-dependent inhibition of chemokine (IL-8, IP-10, MCP-1) and growth factor (GM-CSF) release from PHK activated by TNFα+ IFNγshowed that leontopodic acid was mainly responsible for the inhibitory effects of ECC55. Sirtuin-inhibited cell cycle, proliferation, and apoptosis markers were restored by ECC55. The extract inhibited LPS-induced IL-6 and VCAM1 genes in HUVEC, as well as oxLDL-induced selective VCAM1 overexpression.Conclusion.Edelweiss cell cultures could be a valuable source of anti-inflammatory substances potentially applicable for chronic inflammatory skin diseases and bacterial and atherogenic inflammation.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Irma Colombo ◽  
Enrico Sangiovanni ◽  
Roberta Maggio ◽  
Carlo Mattozzi ◽  
Stefania Zava ◽  
...  

Cultured primary human keratinocytes are frequently employed for studies of immunological and inflammatory responses; however, interpretation of experimental data may be complicated by donor to donor variability, the relatively short culture lifetime, and variations between passages. To standardize the in vitro studies on keratinocytes, we investigated the use of HaCaT cells, a long-lived, spontaneously immortalized human keratinocyte line which is able to differentiate in vitro, as a suitable model to follow the release of inflammatory and repair mediators in response to TNFα or IL-1β. Different treatment conditions (presence or absence of serum) and differentiation stimuli (increase in cell density as a function of time in culture and elevation of extracellular calcium) were considered. ELISA and Multiplex measurement technologies were used to monitor the production of cytokines and chemokines. Taken together, the results highlight that Ca2+ concentration in the medium, cell density, and presence of serum influences at different levels the release of proinflammatory mediators by HaCaT cells. Moreover, HaCaT cells maintained in low Ca2+ medium and 80% confluent are similar to normal keratinocytes in terms of cytokine production suggesting that HaCaT cells may be a useful model to investigate anti-inflammatory interventions/therapies on skin diseases.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2342 ◽  
Author(s):  
You Kim ◽  
Dong Kim ◽  
Chae Park ◽  
Tae Park ◽  
Byoung Park

Nymphoides indica, an aquatic plant, is used as folk medicine in some countries. Our previous study demonstrated that the methanol extract of N. indica inhibited the activity of tyrosinases, tyrosine related protein (TRP)1 and TRP2, and microphthalmia-associated transcription factor, as well as the activity of protein kinase A, by effectively inhibiting cyclic adenosine monophosphate. Although the biological activities of N. indica extract have been reported, there are no reports on the skin bioactivity of the main compound(s) on human keratinocytes. This study investigated the anti-inflammatory and moisturizing effects of quercetin 3,7-dimethyl ether 4′-glucoside (QDG) isolated from N. indica. In brief, ultraviolet B irradiated keratinocytes were pretreated with different concentrations of QDG, and the effects of QDG on various inflammatory markers were determined. QDG significantly inhibited inflammation-related cytokines and chemokines and enhanced the activation of skin barrier factors. Additionally, QDG also attenuated phosphorylation inhibition of the upstream cytokines and nuclear factor-κB expression. These results suggest that QDG isolated from N. indica may serve as a potential source of bioactive substances for chronic inflammatory skin diseases.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3174
Author(s):  
Nhung Quynh Do ◽  
Shengdao Zheng ◽  
Bom Park ◽  
Quynh T. N. Nguyen ◽  
Bo-Ram Choi ◽  
...  

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


2020 ◽  
Vol 21 (3) ◽  
pp. 741 ◽  
Author(s):  
Anamaria Balić ◽  
Domagoj Vlašić ◽  
Kristina Žužul ◽  
Branka Marinović ◽  
Zrinka Bukvić Mokos

Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.


2016 ◽  
Vol 44 (06) ◽  
pp. 1127-1143 ◽  
Author(s):  
Min-Jee Kim ◽  
Yung-Choon Yoo ◽  
Nak-Yun Sung ◽  
Julim Lee ◽  
Seok-Rae Park ◽  
...  

In the present study, the anti-inflammatory and antisepticemic activities of a water extract of Liriope platyphylla (LP) were investigated. We first estimated the scavenging activity of DPPH and the hydroxyl radical and total phenolic contents of LP. Results indicated that LP, a rich source of phenolic compounds, showed a remarkable radical scavenging capacity. A MTT assay showed that LP treatment did not affect the toxicity against the RAW 264.7 macrophage cells, up to the concentration of 500[Formula: see text][Formula: see text]g/mL. Treatment of LP significantly attenuated the production of inflammatory mediators, such as nitric oxide (NO), interleukin-6 (IL-6), tumor-necrosis factor (TNF)-[Formula: see text] and prostaglandin (PG)E2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages cells. Moreover, LP contributed to the down-regulation of inducible NO synthase (iNOS) and TNF-[Formula: see text] mRNA expression, as well as cyclooxygenase-2 (COX-2) protein expression. A western blotting assay further showed that LP inhibited activation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-[Formula: see text]B. In an animal experiment using an LPS-induced septicemia model in C57BL/6 mice, oral administration of LP (40[Formula: see text]mg/kg body weight) markedly reduced the level of TNF-[Formula: see text] and IL-6 in serum and protected against LPS-induced lethal shock in mice. Taken together, the results of treatments of LP on inhibited LPS-induced inflammatory responses in both in vitro and in vivo models and indicate it may be a promising neutraceutical or medicinal agent to prevent or cure inflammation-related disease.


2021 ◽  
Author(s):  
Silvia C Rodrigues ◽  
Renato M S Cardoso ◽  
Patricia C Freire ◽  
Claudia F Gomes ◽  
Filipe V Duarte ◽  
...  

Umbilical cord blood (UCB) has long been seen as a rich source of naive cells with strong regenerative potential, likely mediated by small extracellular vesicles (sEV). More recently, small extracellular vesicles (sEV), such as exosomes, have been shown to play essential roles in cell-to-cell communication, via the transport of numerous molecules, including small RNAs. Often explored for their potential as biomarkers, sEV are now known to have regenerative and immunomodulating characteristics, particularly if isolated from stem cell-rich tissues. In this study, we aim to characterize the immunomodulating properties of umbilical cord blood mononuclear cell sEV (herein referred as Exo-101), and explore their therapeutic potential for inflammatory skin diseases. Exo-101 was shown to shift macrophages toward an anti-inflammatory phenotype, which in turn exert paracrine effects on fibroblasts, despite previous inflammatory stimuli. Additionally, the incubation of PBMC with Exo-101 resulted in an reduction of total CD4+ and CD8+ T-cell proliferation and cytokine release, while specifically supporting the development of regulatory T-cells (Treg), by influencing FOXP3 expression. In a 3D model of psoriatic skin, Exo-101 reduced the expression of inflammatory and psoriatic markers IL-6, IL-8, CXCL10, COX-2, S100A7 and DEFB4. In vivo, Exo-101 significantly prevented or reversed acanthosis in imiquimod-induced psoriasis, and tendentially increased the number of Treg in skin, without having an overall impact on disease burden. This work provides evidence for the anti-inflammatory and tolerogenic effect of Exo-101, which may be harnessed for the treatment of Th17-driven inflammatory skin diseases, such as psoriasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Praxedis Martin ◽  
Jérémie D. Goldstein ◽  
Loïc Mermoud ◽  
Alejandro Diaz-Barreiro ◽  
Gaby Palmer

Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Justyna Chanaj-Kaczmarek ◽  
Magdalena Ulikowska ◽  
Marlena Dudek-Makuch

Introduction. Mother of thousands (Kalanchoe daigremontiana) in folk medicine is applied in the form of compresses fresh, crushed leaf, or juice of the leaves of inflammation of the skin, burns and wound healing. Aim. The aim of the study was to compare the anti-inflammatory and antioxidant properties of juices obtained from the leaves of K. daigremontiana, as well as to determine the content of the polyphenols and flavonoids. Material and methods. Compared the anti-hyaluronidase activity and antioxidant potential (DPPH and FRAP) of juices from K. daigremontiana using a spectrophotometric methods. Moreover, total phenolic content and total flavonoid content were determined by spectrophotometric methods, with the Folin-Ciocalteu reagent (FC) and AlCl3 reagent respectively. Results. The obtained results indicate that the juice prepared from the leaves is characterized by a higher content of active compounds and shows a higher anti-inflammatory and antioxidant activity than the commercial preparation. Conclusions. Juices from K. daigremontiana could be helpful in the treatment of skin diseases.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X1989976 ◽  
Author(s):  
Al B. Bayazid ◽  
Jae G. Kim ◽  
Seo H. Park ◽  
Beong O. Lim

Mori Cortex Radicis (MCR) is a well-known Korean and Chinese folk medicine with anti-obesity, anti-inflammatory, anti-asthmatic, and hypoglycemic activities. This study was aimed to evaluate the total phenolic and flavonoid contents, as well as intracellular antioxidant and anti-inflammatory effects of water and 70% (v/v) ethanol extracts of MCR. The antioxidant activities of MCR extracts were determined with diphenyl-2-picrylhydrazyl and 2,2′-azinobis[3-ethylbenzothiazoline-6-sulfonic] scavenging activity assays. The suppressive activities of MCR extracts on the production of nitric oxide (NO*) and the expression of cytokines, c-Fos, activated p38-Mitogen-activated protein kinase (MAPK), and Nuclear factor Kappa B (NF-κB) and splenocytes proliferation in lipopolysaccharide-treated macrophages were determined. Furthermore, this study demonstrated the effects of MCR on reactive oxygen species production in murine macrophages. Mori Cortex Radicis restored deoxyribonucleic acid damages at higher concentrations of the extracts and significantly suppressed free radicals and NO* production. In this study, MCR significantly restored inflammatory responses and intracellular antioxidant activities in murine macrophages (RAW 264.7), which anticipated that MCR could be used as a natural anti-inflammatory agent.


Sign in / Sign up

Export Citation Format

Share Document